

05 DEC 28 PM 3: 3:

Administrator
ATTN: Chemical Right-to-Know Program
US Environmental Protection Agency
P.O. Box 1473
Merrifield, VA 22116

Dear Sir or Madam:

Re: Barium Stearate, CAS No. 6865-35-6

Chemtura Corporation is providing this letter and submission of a Test Plan and robust summaries as part of our commitment to sponsor CAS Number 6865-35-6 (Barium Stearate) under the HPV Challenge Program.

If you have any questions regarding our commitment, please feel free to contact me at (203) 573-2219 or Alan.Taylor@chemtura.com. You may also contact Dr. Wendy Koch, Epona Associates, LLC at (860) 429-0038 or wendykoch@eponallc.com.

Yours very truly,

Alan Taylor Regulatory Compliance Chemtura Corporation

Attachments: Test Plan

Appendices 1 and 2

cc Charles M. Auer, Director
Office of Pollution Prevention and Toxics
US EPA Headquarters
1200 Pennsylvania Avenue, N.W.
Mail Code: 7401M
Washington, DC 20460

RECEIVED

05 DEC 28 PM 3: 36

BARIUM STEARATE (CAS NO. 6865-35-6): TEST PLAN

Submitted to the US Environmental Protection Agency

By

Chemtura Corporation

DATE: December 22, 2005

SUMMARY

Chemtura Corporation (Chemtura) has sponsored Barium stearate (CAS No. 6865-35-6) under the EPA's High Production Volume (HPV) Program. This document provides the Test Plan and summaries of existing data for this substance.

1.0 INTRODUCTION

Chemtura has voluntarily committed to participate in the Environmental Protection Agency's (EPA) high production volume chemicals (HPV) challenge program, to assess the health and environmental hazards, including selected physical chemical characteristics of barium stearate (CAS No. 6865-35-6).

An evaluation of the available data and proposed test plan are included in this document. As part of this evaluation, data from dissociation products was used to fulfill some endpoints for the sponsored substance. Robust summaries for barium stearate and dissociation products are provided in Appendix 1.

The objective of this test plan is to evaluate the available data and determine what additional data, if any, are needed to adequately characterize the physical properties, environmental fate, and human health and environmental effects of barium stearate. It is proposed that additional studies be conducted as shown in Table 1.

Table 1: AVAILABLE DATA FOR BARIUM STEARATE

Endpoint					
Physical Chemi	cal Properties				
Melting Point	A				
Vapor Pressure	Estimated/Not relevant*				
Boiling Point	Estimated/Not relevant*				
Partition Coefficient	Estimated/Not relevant**				
	R (B,S)				
Water Solubility	Λ				
Environmental Fate					
Hydrolysis	Not relevant**				
Photodegradation	Α				
Biodegradation	R (S)				
Environmental Transport	A				
Ecotox	icity				
Acute Fish	Not relevant***				
	R (B)				
Acute Daphnia	Not relevant***				
	R (B,S)				
Acute Algae	Not relevant***				
	R (B)				
Chronic Daphnia	Test				
Mammalian toxicity					
Acute Oral	A				
Repeated Dose	R (B,S)				
Genotoxicity (in vitro -bacteria)	R (B,S)				
Genotoxicity (in vivo)	R (B,S)				
Reproductive/Developmental	R (B)				

A= Adequate data

Not relevant*= due to the solid nature of the substance

Not relevant**= the substance readily dissociates

Not relevant***= Based on the low water solubility of barium stearate, the estimated high partition coefficient for barium stearate and the high partition coefficient of stearic acid, a chronic daphnia test is proposed

R = Read across to dissociation products: B= barium/compounds, S= Stearic acid

Test = Testing is proposed

Estimated = Value calculated using EPIWIN

2.0 POTENTIAL USE AND EXPOSURE

Barium stearate is a solid material used as a lubricant/processing aid in PVC compounding.

3.0 EVALUATION OF EXISTING DATA AND PROPOSED TESTING

One key characteristic of barium stearate is that it readily dissociates from an ion pair into free metal and free acid. Barium stearate is found as a partially dissociated product in the ambient environment (i.e., neutral pH). Dissociation is a reversible process and the portion of dissociated salt present is dependent on the pH and pKa (the dissociation constant), which is the pH at which 50% dissociation occurs. In the low pH environment of the digestive tract (e.g., pH 1.2) complete dissociation will occur. The transport and bioavailability of the metals and acids are determined by their solubility in environmental media and biological fluids which is determined by environmental parameters such as pH.

Dissociation studies have been conducted for barium stearate and the results show that significant dissociation will occur at approximately neutral pH (i.e., representative of aquatic and marine ecosystems), while complete dissociation will occur at physiologically relevant pH of the mammalian stomach (pH 1.2) (Lezotte, F.J. and W.B. Nixon, 2002). These findings are particularly important in relating available data for the respective acids and metals to support the existing data and in the fulfillment of critical endpoints.

The dissociation constant is important for two reasons. First, it determines the proportion of any specific acid or metal that is dissociated at a given pH. The free acid and corresponding free metal are often much different than the salt (ion pair) moiety in characteristics such as solubility, adsorption, and toxicity. The proportion of dissociation influences the behavior of the substance in the environment and the bioavailability of the acid and metal constituents of metal carboxylate salts.

The dissociation constant indicates that barium stearate has a pKa (pKb) values (pKa1) in the neutral range (6.706). This indicates that in the neutral pH range, significant portions of the metal carboxylate will be dissociated. In addition, at the low pH of the mammalian stomach (pH 1.2) all of the metal carboxylate would be expected to be completely or nearly completely dissociated. This indicates that the absorption and any observed toxicity would be independent for the respective acid and metal when administered orally.

The dissociation constants show that at the pH of the stomach and at the pH of environmental media the important moieties are the ionized free acid and metal. Because of this, data for environmental fate, ecotoxicity, and mammalian toxicity of the free acid, or that for a simple salt (e.g., the sodium salt), can serve as surrogate data for the acid component of respective metal carboxylates. Similarly, under these conditions, data for the metal ion can be represented by fate and toxicity data of free metal ion or simple metal salts (e.g., barium chloride). Therefore, the role in any observed toxicity for acids and metals can be evaluated independently (i.e., as the free metal and/or free acid).

In this test plan, the dissociation products [represented by barium (CAS No. 7440-39-3), barium chloride (CAS No. 10361-37-2) and barium sulfate (CAS No. 7727-43-7), as well as stearic acid (CAS No. 57-11-4)] are used to supplement the physical/chemical properties, environmental fate, aquatic toxicity and mammalian toxicity endpoints for barium stearate.

The available data have been assessed (see Tables 2 through 5). Robust summaries are provided as Appendix 1.

Chemical/Physical Properties:

Barium stearate is a solid. The determination of physical and chemical properties is limited by physical state (solid) and low water solubility. Physical chemical properties are provided in Table 2. The melting point of barium stearate is 160 °C (NISC BiblioLine, 2005). A boiling point has not been determined; the estimated boiling point is 661 °C (EPI SUMMARY, 2005). A vapor pressure has not been determined but it is expected to be negligible, and is not appropriate for determination. The modeled vapor pressure is 7.52E⁻¹⁴ mm Hg (0 hPa) (EPI SUMMARY, 2005). The physical and chemical properties of the dissociation products of barium stearate are also provided in Table 2. With the exception of barium chloride, the dissociation products of barium stearate have very low water solubility's.

Table 2: Summary of Physical and Chemical Property Data for Barium Stearate and Dissociation Products

Compound	Physical Chemical Properties					
	Melting Point (°C)	Boiling Point (°C)	Vapor Pressure (hPa)	Water Solubility		
Barium stearate	160	* 661 Not relevant	0 Not relevant/ Negligible	3.5 mg/L at 20 °C		
	Disso	ciation products				
Barium	~710²	~1600²	Not relevant/ Negligible	Not relevant/ Negligible		
Barium sulfate	1580¹ (decomposes)	1149¹	Not relevant/ Negligible	Insoluble** ²		
Barium chloride	963²	1560³	*** Not relevant/ Negligible ³	37.5 g/100 cm3 at 26 °C ⁴		
Stearic acid	69-70 ⁵	383 ⁵	1.33 at 174°C6	.568 mg/l at 25 °C7		

^{* =} Barium stearate is a solid; determination of boiling point and vapor pressure is not appropriate

Recommendation: No additional testing proposed.

Environmental Fate:

The determination of partition coefficient, hydrolysis and biodegradation are not relevant for barium stearate due to its low water solubility and ready dissociation. As discussed above, barium stearate readily dissociates rather than hydrolyzing in water. Photodegradation and fugacity modeling has been conducted for barium stearate (EPI SUMMARY, 2005). The photodegradation half-life is 0.249 days. Level III fugacity modeling indicates barium stearate will partition primarily to soil and sediment.

Modeled partition coefficients for barium compounds are low (Table 3) (EPI SUMMARY, 2005). Hydrolysis of barium compounds is not relevant as they will dissociate and ionize in water. Photodegradation modeling cannot be conducted for these substances (EpiWin results are presented in Appendix 2). Level III fugacity modeling indicates distribution to soil and water for barium chloride and barium sulfate. Barium is expected to distribute primarily to air and water. For barium compounds, biodegradation is not expected to occur.

Stearic acid has a high partition coefficient (Leo, A.J., 1978) and low water solubility (Robb, ID, 1966) and is hydrolytically stable. Photodegradation modeling indicates a half-life of 0.5 days (EPI

^{** = 1} gram in 400,000 parts

^{*** =} not relevant for metals/metal compounds

¹ ATSDR (1992)

² O'Neil, MJ, Smith, A, Heckelman, PE and JR Obenchain (eds.) (2002)

³ Department of Health and Human Services, National Institute of Occupational Safety and Health (1990)

⁴ Http:/en.wikipedia.org/wiki/Barium Chloride (2005)

⁵ Windholz, M. (1982)

⁶ Weast, R.C. (1969)

⁷ Robb ID (1966)

SUMMARY, 2005). Fugacity modeling indicates distribution primarily to soil and sediment (EPI SUMMARY, 2005). Stearic acid is readily biodegradable (King, E.F.and Painter, H.A., 1983; Novak, J.T. and Kraus, D.L., 1973; Ruffo, C., Galli, E., Arpino, A., 1984; Urano, K. and Saito, M., 1985).

Table 3 Summary of Environmental Fate Data for Barium Stearate and Dissociation Products

Compound	Environmen	tal Fate			
	Partition Coefficient	Stability in Water	Photodegradation	Level III Fugacity Model	Biodegradation
Barium stearate	** 15.4	**/****	T _{1/2} = .249 days Overall OH Rate Constant = 42.9098 E-12 cm3/molecule- sec	Air 0.0807 Water 2.32 Soil 30.7 Sediment 66.9	***
The state of the s		3	Dissociation products		
Barium	** 0.23 (Epiwin)	**/****	**** Not relevant	Air 37.9 Water 55.8 Soil 6.18 Sediment 0.0944	***
Barium sulfate	** 0.63 (Epiwin)	**/****	**** Not relevant	Air 1.42e-006 Water 47.4 Soil 52.5 Sediment 0.091	***
Barium chloride	** 0.85 (Epiwin)	**/***	**** Not relevant	Air 9.42e-006 Water 46 Soil 53.9 Sediment 0.0906	***
Stearic acid	8.42	Stable	T ½ = .5 days Overall OH Rate Constant = 22.4804 E-12 cm3/molecule- sec	Air: 0.676 Water: 7.19 Soil: 28.9 Sediment: 63.3	= 77 % after 28 day(s)

^{** =} Not relevant; substance readily dissociates

Recommendation: No additional testing proposed.

Aquatic Toxicity

Aquatic toxicity data are not available for barium stearate. Data are available for barium and stearic acid, with 96 hr LC50 values in fish of >500 (Heitmuller, P.T., T.A. Hollister and P. R. Parrish, 1981) and 12 mg/l (Leach, J.M. and A.N. Thakore, 1977), respectively. The LC50 value (exposure period not specified) for barium chloride in fish is 42.7 mg/l (US EPA AQUIRE database, 2005). 48 hr LC50 values for daphnia are 68 mg/l (barium; LeBlanc, G.A.), 2.81 – 32 mg/l (barium sulfate; US EPA AQUIRE database, 2005; Khangarot BS and PK Ray, 1989) and 14.5 mg/l (barium chloride; Biesinger, KE and GN Christensen, 1972). The 96 hr EC50 value for algae is 25 mg/l (barium chloride; Wang, W, 1986). Aquatic toxicity data for daphnia and algae are not available for stearic acid.

^{*** =} Barium compounds are not expected to be readily biodegradable

^{**** =} Can not be modeled with EPIWIN

Recommendation: Based on the low water solubility of barium stearate, the high predicted partition coefficient for barium stearate and the high partition coefficient of stearic acid, a chronic daphnia test is proposed.

Table 4 Aquatic Toxicity Data for Barium Stearate and Dissociation Products

Compound	Environmental Effects	**************************************	
	96 hr LC50	48 hr LC50	96 hr EC50
	Fish (mg/L)	Daphnia (mg/L)	Algae (mg/L)
Barium stearate	Not relevant*	Not relevant*	Not relevant*
	Dissociation	Products	
Barium	>500	410	Not available
Barium sulfate	LC0 = 59000	32 2.81	Not available
Barium chloride	42.7**	14.5	25
Stearic acid	12	Not available	Not available

Not relevant*= Based on the low water solubility of barium stearate, ready dissociation, and high partition coefficient of stearic acid, acute aquatic toxicity testing is not appropriate.

Acute Mammalian Toxicity:

Barium stearate has a low acute oral toxicity, with LD50's ranging from 2506 (Gigiena Truda i Professional'nye Zabolevaniya) to 3390 (Crompton Corporation, 2004) mg/kg (rat) and 1832 mg/kg (mouse) (Gigiena Truda i Professional'nye Zabolevaniya) (Table 5). Barium chloride has a much higher acute toxicity, most likely due to the higher water solubility, with values of 132 to >2000 (barium chloride dihydrate) mg/kg in rats (Tardiff, RG, M Robinson, NS Ulmer, 1980; National Toxicology Program, 1994) and >692 ppm (barium chloride dihydrate) in mice (National Toxicology Program, 1994). Stearic acid has a low acute oral toxicity, with an LD50 value of 4600 mg/kg (rat; Clayton, G.D., F.E. Clayton, 1993-1994).

Recommendation: No additional testing is proposed.

Repeated Dose Toxicity:

Repeated dose toxicity studies have not been conducted with barium stearate. However, both barium chloride and stearic acid have been tested. In a 13 week study of barium chloride dihydrate, rats received 125, 500, 1000, 2000 or 4000 ppm barium chloride in drinking water (National Toxicology Program, 1994). Three high dose males and one high dose female died during the last week of the study. Final mean body weights of the high dose group animals were significantly lower than controls. Water consumption at 4000 ppm was 30% lower than controls. There were no substance-related neurobehavioral, cardiovascular or clinical signs. Serum phosphorous levels were significantly higher than controls in both sexes in the 2000 and 4000 ppm groups. Renal tubule dilatation was observed in both sexes of the high dose group. The NOAEL was 1000 ppm. A 13 week study was also conducted in mice under the same protocol as described for rats above (National Toxicology Program, 1994). Six high dose males and seven high dose females died. One male in the 125 ppm group also died. Final mean body weights of the high dose group animals were significantly lower than controls. Water consumption was 18% lower than controls. Debilitation was observed in high dose animals. Absolute and/or relative liver weights were significantly lower in the 1000, 2000 and 4000 ppm group animals. Multifocal to diffuse nephropathy was observed in the high dose group. The NOAEL was 500 ppm. In a 13 week

^{**}Exposure period not specified

drinking water study, rats were exposed to 10, 50 or 250 ppm barium chloride dihydrate (Tardiff, RG, M Robinson, NS Ulmer, 1980). Animals were sacrificed at 4, 8 and 13 weeks. No effects were observed for food consumption, clinical signs, body weight, hematology, serum enzymes, serum ions, gross pathology and histopathology. Water consumption was slightly decreased in the high dose animals. A slight decrease in relative adrenal weight was observed in treated animals versus controls. Increased dose resulted in increased concentrations in barium in liver, skeletal muscle, heart and bone. In a 14 day drinking water study, rats were exposed to 125, 250, 500, 1000 or 2000 ppm barium chloride (National Toxicology Program, 1994). There were no findings other than reduced water consumption at the high dose. The NOAEL was 1000 ppm. In a 14 day drinking water study, mice were exposed to 40, 80, 173, 346, 692 ppm barium chloride (National Toxicology Program, 1994). Increased relative and absolute liver weights were observed in high dose group animals. The NOAEL was 346 ppm.

Rats fed 50 g/kg/day stearic acid for 24 weeks developed reversible lipogranulomas in adipose tissue (Clayton, G.D., F.E. Clayton, 1993-1994). No significant pathological lesions were observed in rats fed 3000 ppm stearic acid orally for about 30 weeks, but anorexia, increased mortality, and a greater incidence of pulmonary infection were observed. Stearic acid is one of the least effective fatty acids in producing hyperlipemia, but the most potent in diminishing blood clotting time. Rats fed 6% stearic acid for 9 weeks showed a decreased blood clotting time and hyperlipemia (Clayton, G.D., F.E. Clayton, 1993-1994). When diets containing 5 to 50% stearic acid (as the monoglyceride) were fed to weanling mice for 3 weeks, depression of weight gain was seen above the 10% dietary level (Clayton, G.D., F.E. Clayton, 1993-1994). Mortality occurred only with the 50% diet. The effects were less noticeable in adult mice.

Recommendation: No additional testing is proposed.

Reproductive/Developmental Toxicity:

Reproductive toxicity studies have not been conducted with barium stearate. A reproductive study has been conducted with barium chloride. Rats were exposed for 60 days prior to mating to 1000, 2000 or 4000 ppm barium chloride dihydrate in drinking water (WHO Environmental Health Criteria, 1990). There were no signs of reproductive or developmental toxicity. The NOAEL for reproductive or developmental toxicity was 4000 ppm. Mice were exposed for 60 days prior to mating to 500, 1000, or 2000 ppm barium chloride dihydrate in drinking water (WHO Environmental Health Criteria, 1990). There were no signs of reproductive or developmental toxicity. The NOAEL for reproductive or developmental toxicity was 2000 ppm.

There are no reproductive or developmental studies with stearic acid. However, stearic acid is the most common of the long-chain fatty acids. It is found in many foods, such as beef fat, and cocoa butter. It is widely used as a lubricant, in soaps, cosmetics, food packaging, deodorant sticks, toothpastes, and as a softener in rubber. Long-term safe use of this substance precludes the necessity for additional testing.

Recommendation: No additional testing is proposed.

Mutagenicity Assays:

No genetic toxicity testing is available for barium stearate. Barium chloride is negative for bacterial and mammalian genotoxicity (National Toxicology Program, 1994; Rossman, TG, M Molina, L Meyer, P Boone, CB Klein, Z Wang, F Li, WC Lin, and PL Kinney, 1991; National Toxicology Program, 1983). There are no mutagenicity assays with stearic acid. However, stearic acid is the

most common of the long-chain fatty acids. It is found in many foods, such as beef fat, and cocoa butter. It is widely used as a lubricant, in soaps, cosmetics, food packaging, deodorant sticks, toothpastes, and as a softener in rubber. Long-term safe use of this substance precludes the necessity for additional testing.

Recommendation: No additional testing is proposed.

Table 5 Mammalian Toxicity Data for Barium Stearate and Dissociation Products

Compound	Mammalia	n Toxicity			
	Oral LD50;	Repeat Dose Toxicity	Repro. Effects	Develop. Effects	Genetic Toxicity
N	(mg/kg) 3390 (rat)	Not available	Not	Not	Not available
Barium stearate	2506 (rat) 1832 (mouse)	Mor gastisois	available	available	140t avaitable
	(mouse)	Dissocia	tion Produ	ets	
Barium	T	Not available	Not	Not	
	Not available		available	available	Not available
Barium sulfate	Not available	Not available	Not available	Not available	Not available
Barium	132 (rat) >2000 (rat) >692 ppm (mouse)	NOAEL = 1000 ppm (13 week, rat, drinking water) NOAEL = 500 ppm (13 week, mouse, drinking water) NOAEL = 1000 ppm (14 d, rat, drinking water) NOAEL = 346 ppm (14 d, mouse, drinking water) NOAEL = 50 ppm (13 week, rat. Drinking water) NOAEL = 209 (10 d, rat, drinking water) LOAEL = 100 mg/l (16 month, rat, drinking water)	NOAEL = 4000 mg/l (rat, drinking water) NOAEL = 2000 mg/l (mouse, drinking water)	NOAEL = 4000 mg/l (rat, drinking water)	Negative (bacterial mutation; in vitro chromosome aberration)
Stearic acid	4600 (rat)	50 g/kg/d for 24 weeks produced reversible lipogranulomas in rats. 6% for 9 weeks produced decreased blood clotting time and hyperlipemia in rats. NOAEL = 5% for 3 weeks (mice)	Not available	Not available	Not available

REFERENCES

ATSDR (1992) Agency for Toxic Substances and Disease Registry, Toxicological Profile for Barium and Compounds. July 1992.

Biesinger, KE and GN Christensen (1972) Effects of Various Metals on Survival, Growth, Reproduction and Metabolism of *Daphnia Magna*. J Fish Research Bd Canada 29: 1691-1700

Clayton, G.D., F.E. Clayton (eds.) Patty's Industrial Hygiene and Toxicology. Volumes 2A, 2B, 2C, 2D, 2E, 2F: Toxicology. 4th ed. New York, NY: John Wiley & Sons Inc., 1993-1994. 3568. Cited in BiblioLine

Crompton Corporation (2004) MSDS for Barium Stearate, version 1.1

Department of Health and Human Services, National Institute of Occupational Safety and Health (1990) NIOSH Pocket Guide to Chemical Hazards. US Government Printing Office, Washington, DC.

EPI SUMMARY (v3.11) (2005)

Gigiena Truda i Professional'nye Zabolevaniya. Labor Hygiene and Occupational Diseases. (V/O Mezhdunarodnaya Kniga, 113095 Moscow, USSR) V.1-36, 1957-1992. Cited in NISC BiblioLine

Heitmuller, P.T., T.A. Hollister and P. R. Parrish. (1981) Acute Toxicity of 54 Industrial Chemicals Sheepshead Minnows (Cyprinodon variegatus) Bull. Enviro. Contam. Toxicol. 27:596-604

Http:/en.wikipedia.org/wiki/Barium Chloride (2005)

Lezotte, F.J. and W.B. Nixon (2002) Determination of the dissociation constant of barium stearate, Wildlife International, Ltd. Study No. 534C-112, conducted for the Metal Carboxylates Coalition.

Khangarot BS and PK Ray (1989) Investigation of correlation between physicochemical properties of metals and their toxicity to the water flea *Daphnia Magna* Straus. Ecotoxicol Environ Safety 38: 109-120

King, E.F.; Painter, H.A. (1983) RING-TEST PROGRAM 1981-1982. ASSESSMENT OF BIODEGRADABILITY OF CHEMICALS IN WATER BY MANOMETRIC RESPIROMETRY. COMM. EUR. COMMUNITIES, EUR 8631. 31 PP, 1983 CIS Record ID.: BD-0000218

Leach, J.M. and A.N. Thakore (1977) Compounds Toxic to Fish Pulp Mill Waste Streams Progress in Water Technology, 9: 787-798 CIS Record ID.: AQ-0132049.

LeBlanc, G.A. Acute Toxicity of Priority Pollutants to Water Flea (Daphnia magna). Bull. Environ. Contam. Toxicol. 24:684-691. AQUIRE database info accessed on 11/9/05 via http://www.pesticideinfo.org/List_AquireAll.jsp?Rec_Id=PC35604&Taxa_Group=Crustaceans

Leo, A.J. (1978) Report on the Calculation of Octanol/Water Log P Values for Structures in EPA Files. CIS Record ID: 1S-0000416. BiblioLine © 1997-2003, NISC International, Inc.

Lezotte, F.J. and W.B. Nixon (2002) Determination of the dissociation constant of barium stearate, Wildlife International, Ltd. Study No. 534C-112, conducted for the Metal Carboxylates Coalition.

National Toxicology Program (1983) Accessed 12/20/2004 http://ntp-apps.niehs.nih.gov/ National Toxicology Program (1994) Toxicology and Carcinogenesis Studies of Barium Chloride Dihydrate (CAS No. 10326-27-29) in F344/N Rats and B6C3F1 Mice (Drinking Water Studies) TR 432

NISC BiblioLine (2005).

Novak, J.T. and Kraus, D.L. (1973) DEGRADATION OF LONG CHAIN FATTY ACIDS BY ACTIVATED SLUDGE. Water Research, 7: 843-51, 1973 ISSN: 0043-1354 CIS Record ID.: BD-0000208.

O'Neil, MJ, Smith, A, Heckelman, PE and JR Obenchain (eds.) (2002) The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals. 13th Edition. Merck and Co., Inc. Whitehouse Station, NJ

Robb ID (1966) Aust J Chem 19: 2281-84 (1966) Cited in BiblioLine © 1997-2003, NISC International, Inc.

Rossman, TG, M Molina, L Meyer, P Boone, CB Klein, Z Wang, F Li, WC Lin, and PL Kinney (1991) Performance of 133 Compounds in the lambda prophage induction endpoint of the Microscreen assay and a comparison with *S typhimurium* mutagenicity and rodent carcinogenicity assays, Mut Res. 260: 349-367

Ruffo, C.; Galli, E.; Arpino, A. (1984) COMPARISON OF METHODS FOR THE BIODEGRADABILITY OF SOLUBLE AND INSOLUBLE ORGANOCHEMICALS. Ecotoxicology and Environmental Safety, 8: 275-9, 1984 CIS Record ID.: BD-0000209. BiblioLine © 1997-2003, NISC International, Inc.

Tardiff, RG, M Robinson, NS Ulmer (1980) Subchronic Oral Toxicity of BaCL2 in Rats. J Environ Path Toxicol. 4: 267-275

Urano, K. and Saito, M. (1985) BIODEGRADABILITY OF SURFACTANTS AND INHIBITION OF SURFACTANTS TO BIODEGRADATION OF OTHER POLLUTANTS, Chemosphere, 14: 1333-42, 1985

CIS Record ID.: BD-0000210. BiblioLine © 1997-2003, NISC International, Inc.

US EPA AQUIRE database (2005) via

http://www.pesticideinfo.org/list_AquireAll.jsp?REC_ID=PC33796&Taxa_Group=Zooplankton (accessed on 11/01/05) or via

http://www.pesticideinfo.org/ListAquireAcuteSum.jsp?Rec_Id=PC35604&Taxa-Group=Fish) (accessed on 11/19/2005)

Wang, W (1986) The Effect of River Water on Phytotoxicity of Ba, Cd and Cr. Environ Pollut Ser B 0143-148 (as Cited in Aquire database accessed 10/15/05

Weast, R.C. (1969) Chemical Rubber Company Handbook of Chemistry and Physics. 50th Ed, CRC Press, Inc. Cleveland, Ohio, 1969 CIS Record ID.: IS-0000414. BiblioLine © 1997-2003, NISC International, Inc.

WHO Environmental Health Criteria (1990) Number 107, Barium

Windholz, M. (1982) The Merck Index, 9th Edition Merck and Company, Inc., Rahway, NJ, 1982. CIS Record ID.: IS-0000412 BiblioLine © 1997-2003, NISC International, Inc.

1. General Information

RECEIVED

in 10361-37-2

Date 9 Nov 2005

05 DEC 28 PM 3: 36

1.0 SUBSTANCE INFORMATION

Generic Name Chemical Name : Barium chloride : Barium dichloride

CAS Registry No.

10361-37-2

Component CAS Nos. EINECS No.

: : 233-788-1

Structural Formula

: BaCl₂

Official at Louisian

Additional description Molecular Weight

208.23

Synonyms and Tradenames Barium (II) chloride; RTECS CQ8750000; HSD8 2633; NCI C61074

: ATSDR, 1992 (Agency for Toxic Substances and Disease Registry,

Toxicological Profile for Barium and Compounds, July 1992)

References

O'Neil, M.J., Smith, A., Heckelman, P.E., and J.R. Obenchain (eds.). 2002. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Ed. Merck & Co., Inc., Whitehouse Station, NJ. (molecular weight

value)

in 10361-37-2

Date 9 Nov 2005

2.1 **MELTING POINT**

Value

= 963 °C

Decomposition

Sublimation Method

Other 2002

Year GLP

Test substance

As prescribed by 1.1-1.4

Reliability

: (2) valid with restrictions

Source is well established data compendium.

Reference

: O'Neil, M.J., Smith, A., Heckelman, P.E., and J.R. Obenchain (eds.). 2002. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals.

13th Ed. Merck & Co., Inc., Whitehouse Station, NJ.

2.2 **BOILING POINT**

Value

= 1560 °C

Decomposition

Method Year

Other 1990

GLP

No

Test substance

As prescribed by 1.1-1.4

Reliability

: (2) valid with restrictions

Reference

Source is well established NIOSH reference.

: Department of Health and Human Services, National Institute for

Occupational Safety and Health. 1990. NIOSH Pocket Guide to Chemical

Hazards. U.S. Government Printing Office, Washington, DC.

2.3 DENSITY

Type Value

density $= 3.86 \text{ g/cm}^3$

Method Year

Other 2002

GLP

: No

Test substance

: As prescribed by 1.1-1.4

Reliability

: (2) valid with restrictions

Source is well established data compendium.

Reference

: O'Neil, M.J., Smith, A., Heckelman, P.E., and J.R. Obenchain (eds.). 2002. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals.

13th Ed. Merck & Co., Inc., Whitehouse Station, NJ.

Date 9 Nov 2005

VAPOUR PRESSURE

Type

Value

Decomposition

Method Other Year 1990 **GLP** No

Test substance

: As prescribed by 1.1-1.4

Result Reliability : Low based on melting point and boiling point data

: (2) valid with restrictions

Source is well established NIOSH reference.

: Department of Health and Human Services, National Institute for Reference

Occupational Safety and Health. 1990. NIOSH Pocket Guide to Chemical

Hazards, U.S. Government Printing Office, Washington, DC.

PARTITION COEFFICIENT

Type

Partition coefficient Log Pow

pH value

Other

Method Year **GLP**

2005 No

Test substance

: As prescribed by 1.1-1.4

Result

Compound dissociates and ionizes in water

Reliability Reference (2) valid with restrictions

Information taken from a secondary literature source (electronic database)

http://en.wikipedia.org/wiki/Barium_chloride (accessed 18 Oct. 2005)

2.6.1 SOLUBILITY IN DIFFERENT MEDIA

Solubility in

Water

Value

= 37.5 other: g/100 cm³ at 26 °C

Hq value

°C at

Temperature effects

concentration

Examine different pol.

PKa

at °C

Description Stable

Deg. product

Method

Year **GLP**

Other 2005 : No

Test substance

: As prescribed by 1.1-1.4

Reliability

: (2) valid with restrictions

Reference

Data taken from a secondary literature source (electronic database) : http://en.wikipedia.org/wiki/Barium_chloride

Date 9 Nov 2005

(accessed 18 Oct. 2005)

Solubility in

: Water

Method Year : Other : 2002

GLP Test substance

: No : As prescribed by 1.1-1.4

Result Reliability Very soluble in water(2) valid with restrictions

Reliability

Source is well established data compendium.

Reference

: O'Neil, M.J., Smith, A., Heckelman, P.E., and J.R. Obenchain (eds.). 2002. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals.

13th Ed. Merck & Co., Inc., Whitehouse Station, NJ.

3.1.1 PHOTODEGRADATION

3.1.2 STABILITY IN WATER

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

Type Media

ype

Air : % (Fugacity Model Level I)

Water : % (Fugacity Model Level I)

Soil : % (Fugacity Model Level I)

Biota : % (Fugacity Model Level II/II)

Soil : % (Fugacity Model Level II/III)

Year Test substance : 2005 : As prescribed by 1.1-1.4

Method

: EPIWIN

Result

: Level III Fugacity Model:

Mass Amount Half-Life **Emissions** (percent) (kg/hr) (hr) Air 9.42e-006 1e+005 1000 Water 46 900 1000 Soil 53.9 900 1000 Sediment 0.0906 3.6e+003 0

. . . .

Persistence Time: 813 hr

Reliability

: (2) valid with restrictions

Data were obtained by modeling.

Reference

: EPIWIN (ver 3.11) (2005)

3.3.2 DISTRIBUTION

Date 9 Nov 2005

3.5 BIODEGRADATION

4.1 ACUTE TOXICITY TO FISH

Type : Flow-through

Species : Rainbow trout (Onchorhynchus mykiss)

Exposure period

Unit : ug/L

NOEC LC0

LC50 : = 42,700

LC100 Limit test

Analytical monitoring : No Method : other Year : 1980 GLP : No

Test substance : As prescribed by 1.1-1.4

Method : Donaldson trout were used in the study.

Result : Slight toxicity in Rainbow trout, but determined not to be acutely toxic Remark : The bioavailability and resultant aquatic toxicity of barium chloride are

affected by a variety of factors, including water hardness, pH, dissolved organic carbon and temperature. Average reported LC₅₀ values for barium chloride for various species of fish include 1,000,000 µg/L in eight studies of Mummichog (*Fundulus heteroclitus*) and 2,036,667 µg/L in three studies of Western mosquitofish (*Gambusia affinis*) and 870,000 µg/L in one study of Carp (Leuciscus idus melanotus) and 150,000 µg/L in one study of Brown trout (*Salmo trutta*) and four studies of Coho salmon (*Onchorhynchus kisutch*) using static exposures ranged from a 3 day NOEC of 88,800 µg/L to a 6 day NOEC of 282,000 µg/L (data derived from U.S. EPA. AQUIRE

database, 2005)

Reliability : (2) valid with restrictions

Insufficient details are present to indicate whether all test methods followed the Guidelines. However, methods and number of studies with similar

results seem sufficient to accept the data

Reference : http://www.pesticideinfo.org/List_AquireAcuteSum.jsp?Rec_ld=PC35604&T

axa_Group=Fish) (accessed on 11/19/2005).

4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES

Type : Flow-through

Species : Daphnia magna (Crustacea)

Exposure period : 48 hour(s) **Unit** : ug/L **LC50** : = 14,500

Limit test

Analytical monitoring

Method : other Year : 1972 GLP : No

Test substance ; As prescribed by 1.1-1.4

Date 9 Nov 2005

Result

: LC50 = 14,500 ug/L (without food)

Remark : The bioavailability and resultant aquatic toxicity are affected by a variety of

factors, including water hardness, pH, dissolved organic carbon and temperature. Several crustacean studies were found including two studies conducted in 1988 in Yellow Rock Crab (Cancer anthonyl) showing embryo toxicity after 7 days in flow-through studies at concentrations of 10,000 and 100,000 µg/L, respectively. Slight toxicity was seen in several Crayfish (Austropotamobius pallipes pall) studies conducted in 1973 in a static

system. (U.S. EPA, AQUIRE database, 2005).

Reliability

: (2) valid with restrictions

Comparable to guideline study with adequate documentation.

Reference : Biesinger, K. E. and G. N. Christensen. 1972. Effects of Various Metals on

Survival, Growth, Reproduction, and Metabolism of Daphnia magna.

J. Fish. Res. Bd. Canada, 29:1691-1700.

http://www.pesticideinfo.org/List_AquireAll.jsp?Rec_Id=PC35604&Taxa_Gr

oup=Crustaceans (AQUIRE database info accessed on 11/9/05)

4.3 TOXICITY TO AQUATIC PLANTS (E.G., ALGAE)

Species

: Other algae: Duckweed (Lemna minor)

Endpoint

Growth rate

Exposure period

96 hrs

Unit

ug/L

EC50

= 25,000

Limit test

Analytical monitoring

other

Method Year

1986

Year GLP

No

Test substance

As prescribed by 1.1-1.4

Method

Static test

Remark

: The bioavailability and resultant aquatic toxicity are affected by a variety of

factors, including water hardness, pH, dissolved organic carbon and temperature. The reported minimum toxic dose in aquatic moss.

(Physcomitrella patens) was 208.2 µg/L in studies published in 1990 and 1993 according to ASTM STP 1179 and 1091. (U.S. EPA, AQUIRE database, 2005). Reagent grade barium chloride was moderately toxic in de-ionized water and nontoxic in Illinois river water to Duckweed (Wang)

Reflability Reference : (2) valid with restrictions. Comparable to guideline study

: Wang, W. (1986) The Effect of River Water on Phytotoxicity of Ba, Cd and

Cr. Environ. Pollut. Ser. B 0143-148. (as cited in AQUIRE data base

accessed 10/19/05)

5.0 TOXICOKINETICS, METABOLISM AND DISTRIBUTION

In vitro/in vivo

Туре

Species

Number of animals

~ . ~

Date 9 Nov 2005

Males

Females

Doses

Males Females

Vehicle

Route of administration

Exposure time

Product type guidance
Decision on results on
acute tox, tests

acute tox. tests
Adverse effects on
prolonged exposure

Half-lives

1st: bone

Estimated to be about 50 days

2 nd.

Toxic behavior Deg. product

Deg. products CAS#

Method Year GLP Other 2005

No

Test substance

As prescribed by 1.1-1.4

Remark

: Human and animal studies suggest that barium chloride and other soluble barlum salts administered orally, by injection or intragastrically are rapidly absorbed from the intestinal tract into the bloodstream and then into the muscle, lungs and bone with very little being retained by the soft tissues (with the exception of the eye). Fasted animals showed increased absorption of barium compounds (20% vs. 7%) than those with access to food. Barium compounds are generally absent from the blood within 24 hours, but retention in the bone is similar to calcium with a half-life estimated at 50 days. Approximately half the dose is bound to protein. These compounds are known to stimulate striated, cardiac and smooth muscle by displacing calcium in cell membranes which increases membrane permeability. Barium compounds activate secretion of catecholamines. Death may be caused by failure of muscular contractions resulting in respiratory failure and cardiovascular collapse. Non-lethal doses in rats were largely excreted in the feces (20%) and to a lesser extent in the urine (7%) within the first 24 hours. Barium clearance is increased by intravenous administration of saline solutions.

Test substance Reliability Barium chloride and other soluble barium salts

(2) valid with restrictions

Summary based on peer-reviewed publications

Reference

Hazardous Substances Data Bank http://toxnet.nlm.nih.gov

(accessed 8/16/05)

//risk.lsd.ornl.gov/tox/profiles/barium_f_V1.shtml#te (accessed 11/9/2005)

in vitro/in vivo

In vivo

Type Species Absorption
Syrian harnster

Number of animals

Males

- . .

in 10361-37-2

Date 9 Nov 2005

Females

Doses

Males Females

Vehicle

Route of administration:

Exposure time

Product type guidance Decision on results on

acute tox, tests Adverse effects on prolonged exposure

Half-lives

1*

Inhalation

4 hour(s)

Toxic behavior

Deg. product

Method

Year

GLP

No

Test substance

Other TS

other

Remark

Nasopharynx was the major absorption site for inhaled aerosols of soluble

barium, especially for readily soluble aerosols having a mass medium

aerodynamic diameter of > 5 µm.

Year of study unknown, but cited in 1990

Result

Barium absorption into the general circulation from nasal passages was approximately 61% as compared to 11% from GI absorption after four hours

: Labeled barium chloride

Test substance

Reliability

(2) valid with restrictions

Summary cited in peer-reviewed WHO report

Reference : WHO Environmental Health Criteria 107, Barium (1990)

5.1.1 ACUTE ORAL TOXICITY

Type

LD501

Value

= 132 mg/kg bw

Species

: Rat

Strain Sex

No data Male/female

Number of animals

80

Vehicle

Water

Doses

Other: Not specified

Method

other

Year GLP

1980

Test substance

No : As prescribed by 1.1-1.4

Method

: Single dose administered by gavage (10 per dose level)

: Adult (60-70 days of age) and weanling (21-25 days of age) were used to

determine the LD50 using BaCl2 dissolved in distilled water and administered by gavage. All animals were observed for 14 days.

Result

: 220 mg/Kg (500 mg BaCl2/Kg) in weanling rats (confidence limits 434-600)

132 mg/Kg (300 mg BaCl2/Kg) in adults (confidence limits 255-369). The

5. Toxicity

in 10361-37-2

Date 9 Nov 2005

results were used to select the dose for subchronic studies (Tardiff, et al.)

Remark : Acute LD50 values in rats ranged from 118-500 mg/Kg, 7-29 mg/Kg in mic

: Acute LD50 values in rats ranged from 118-500 mg/Kg, 7-29 mg/Kg in mice, 90 mg/Kg in dogs, 170 mg/Kg in rabbits and 800-1200 mg/Kg in horses (Friberg, et al. 1986) Acute oral toxicity in humans is reported to occur at 80 mg/Kg (McCauley, et al. Chapter XVIII, page 197-210, book unknown)

Reliability

: (2) valid with restrictions

References from peer-reviewed publication

Reference : Friberg cited in Hazardous Substances Data Bank http://toxnet.nlm.nih.gov

(accessed 8/16/05) Tardiff, R.G., M. Robinson, N. S. Ulmer. (1980) Subchronic Oral Toxicity of BaCl2 in Rats. J. Environ. Path. Toxicol. 4:267-

275.

Type Value : LD50 : > 2000 ppm

Species

Rat

Strain Sex Other: F344/N Male/female

Number of animals

Vehicle

Water

Doses Method

other

Year GLP 1994 No data

Test substance

Other TS

Remark

: Barium chloride dihydrate

Test substance

: (2) valid with restrictions

Reliability

Adequate documentation available in a study conducted by NTP.

Reference

: National Toxicology Program. (Jan. 1994) Toxicology and Carcinogenesis Studies of Barium Chloride Dihydrate (CAS No. 10326-27-9) in F-344/N

Rats and B6C3F1 Mice (Drinking Water Studies). TR-432.

NTP probably followed GLP criteria during that time.

Type Value Species : LD50 : >692 ppm : Mouse

Strain Sex

B6C3F1 Male/female

Number of animals

Vehicle

Water

Doses Method

other

Year GLP otner 1994 No data

Test substance

: Other TS

Remark

NTP probably followed GLP criteria during that time

Test substance

Barium chloride dihydrate(2) valid with restrictions

Reliability : (2) vali

Adamsta designation

Reference

Adequate documentation available in a study conducted by NTP.

National Toxicology Program. (Jan. 1994) Toxicology and Carcinogenesis Studies of Barium Chloride Dihydrate (CAS No. 10326-27-9) in F-344/N

Rats and B6C3F1 Mice (Drinking Water Studies). TR-432.

~ . ~ .

in 10361-37-2

Date 9 Nov 2005

5.1.2 ACUTE INHALATION TOXICITY

5.1.3 ACUTE DERMAL TOXICITY

Remark

: Not expected to cross intact skin due to the high polarity of the various

forms of barium compounds most commonly encountered

Reliability

Reference

ATSDR, 1992 (Agency for Toxic Substances and Disease Registry,

Toxicological Profile for Barium and Compounds, July 1992)

5.2.1 SKIN IRRITATION

Remark

May be a human skin irritant, but no studies were found as confirmatory

Reliability

Reference

: ATSDR, 1992 (Agency for Toxic Substances and Disease Registry,

Toxicological Profile for Barium and Compounds, July 1992)

5.2.2 EYE IRRITATION

Species

Rabbit

Concentration

Dose

Other: 0.08 to 0.1 M solution

Exposure time Number of animals

Vehicle

Classification

Method Year

Other

1986

GLP

No data

Test substance

As prescribed by 1.1-1.4

Method

: 0.08 to 0.1 M solution injected into comea (single injection); 10 minute

dropping on eye after comeal epithelium was removed

Result

: No opacification of comea, but caused considerable iritis which subsided in

a few days

Reliability

: (3) invalid

Reference

Non-standard method and few experimental details

Grant, W.M. (1986) Toxicology of the Eye. 3rd Edition. Springfield: Charles

C. Thomas Publisher, p. 134

5.4 REPEATED DOSE TOXICITY

Type

Subchronic

Species

Rat

....

Date 9 Nov 2005

Other: F344/N Strain Male/female Sex

Number of animals

Route of admin. Drinking water Exposure period 13-Weeks Frequency of treatment : Continuous

None Post exposure period

Doses 125, 500, 1,000, 2,000 or 4,000 ppm corresponding to average daily doses

Yes, concurrent vehicle

of 10, 30, 65, 110 or 200 mg barium/kg/body weight in males and 10, 35,

65, 115 or 180 mg barium/kg/body weight in females

Control group

NOAEL

LOAEL Method Other

Year 1994 GLP No data Test substance Other TS

: 10 per sex per dose level; Measurements included body weights, water Method

consumption, clinical signs, hematology and clinical chemistry,

neurobehavioral effects, major organ pathology

Three males and one female died in the high dose group in the last week of Result

the study. Final mean body weights in high dose group in both sexes were significantly lower than controls. Water consumption at 4,000 ppm was 30% lower than controls. No clearly related chemical effects were noted in neurobehavioral, cardiovascular or clinical signs. Serum phosphorus levels were significantly higher than controls in box sexes at 2,000 and 4,000 ppm. Renal tubule dilatation in the outer stripe of the medulla and cortex occurred

at the 4,000 ppm group in males and females.

Remark Although not stated in the summary, the NTP study was likely conducted

according to GLP.

Test substance Reliability

: Barium chloride dihydrate : (2) valid with restrictions

Comparable to guideline study with adequate documentation.

Reference National Toxicology Program. (Jan. 1994) Toxicology and Carcinogenesis

Studies of Barium Chloride Dihydrate (CAS No. 10326-27-9) in F-344/N

Rats and B6C3F1 Mice (Drinking Water Studies). TR-432.

Sub-chronic Type Species Mice Strain **B6C3F1** Sex Male/female

Number of animals

Route of admin. Drinking water

Exposure period 13 wk Frequency of treatment: Continuous

Post exposure period None

Doses 125, 500, 1,000, 2,000 or 4,000 ppm corresponding to average daily doses

.....

of 15, 55, 100, 205 or 450 mg barium/kg body weight to males and 15, 60,

110, 200 or 495 mg barium/kg body weight in females

Control group

Yes, concurrent vehicle NOAEL

LOAEL

Method : Other Year : 1994 GLP

: No data Test substance : Other TS

Date 9 Nov 2005

Method

: Groups of male and female rats (10 per sex per dose level) were given drinking water barium chloride dihydrate for 13 weeks. Animals were observed daily for clinical signs of toxicity and weighed weekly. Water intake was measured. Prior to study termination, blood samples were collected and analyzed for hematological and biochemical parameters. Following necropsy, gross pathological and histopathological examinations were conducted on selected target organs and tissues. Organs weights were also determined.

Results

Mortality was observed in six males and seven females at 4,000 ppm and in one male at 125 ppm. Final mean body weights at 4,000 ppm were significantly reduced (>30%) from controls. Water consumption was 18% lower than controls in males at 4,000 ppm while other doses were similar. Debilitation was observed in the surviving animals at 4,000 ppm. Absolute and/or relative liver weights in the 1,000, 2,000 and 4,000 ppm dose groups were significantly lower than controls. Multifocal to diffuse nephropathy characterized by tubule dilatation, regeneration and atrophy was observed in the high dose.

Remark

: Although not stated in the summary, the NTP study was likely conducted

according to GLP.

Reliability

: (2) valid with restrictions

Comparable to guideline study with adequate documentation.

Reference

National Toxicology Program. (Jan. 1994) Toxicology and Carcinogenesis Studies of Barium Chloride Dihydrate (CAS No. 10326-27-9) in F-344/N Rats and B6C3F1 Mice (Drinking Water Studies). TR-432.

Type Species Sub-acute

Rat Strain Other: F344/N

Male/female Sex Route of admin. **Drinking water** Exposure period 14 days Frequency of treatm. continuous

Post exposure period

: none

Doses Control group

0, 125, 250, 500, 1,000 or 2,000 ppm : Yes, concurrent vehicle

Method Year

Other

GLP Test substance

1994 No data Other TS

Remark

: Although not stated in the summary, the NTP study was likely conducted according to GLP.

Result

: There were no findings in rats with the exception of decreased water consumption in high dose rats

Test substance Reliability

: Barium chloride dihydrate : (2) valid with restrictions

Comparable to guideline study with adequate documentation.

Reference

: National Toxicology Program. (Jan. 1994) Toxicology and Carcinogenesis Studies of Barium Chloride Dihydrate (CAS No. 10326-27-9) in F-344/N Rats and B6C3F1 Mice (Drinking Water Studies). TR-432.

Sub-acute Type Mouse Species Strain : B6C3F1

Date 9 Nov 2005

Sex

: Male/female

Route of admin.

Drinking water

Exposure period

14 days

Frequency of treatm. Post exposure period : continuous

Doses

0, 40, 80, 173, 346 or 692 ppm

Control group

Yes, concurrent vehicle

Method Year

Other 1994

GLP Test substance

No data : Other TS

Method

: Daily in drinking water. Measurements of body weights, clinical findings. water consumption, hematology, clinical chemistry, relative/absolute organ

weights and neurobehavioral patterns

Remark

: Although not stated in the summary, the NTP study was likely conducted

according to GLP.

Result

: There were no findings in mice with the exception of increased absolute and

relative liver weights in high dose mice.

Test substance

Barium chloride dihydrate

Reliability

: (2) valid with restrictions Comparable to guideline study with adequate documentation.

Reference

National Toxicology Program. (Jan. 1994) Toxicology and Carcinogenesis Studies of Barium Chloride Dihydrate (CAS No. 10326-27-9) in F-344/N

Rats and B6C3F1 Mice (Drinking Water Studies). TR-432.

Type

Sub-chronic

Species

Rat

Strain

Charles River

Sax

Male/female

Number of animals

Route of admin.

Drinking water

Exposure period

13 wk

Frequency of treatment :

Continuous

Post exposure period

None

Doses

10, 50, or 250 ppm in drinking water (females had a slightly higher exposure

to barium than males in all treatment groups)

Control group

: Yes, concurrent vehicle

NOAEL LOAEL Method

1980

Year GLP

No

Test substance

As prescribed by 1.1-1.4

Method

Subgroups of at least 5 rats per sex per dose level were sacrificed at 4, 8 or 13 weeks for measurement of biochemical or hematologic parameters, comprehensive histopathological examination and analysis of barium levels in selected tissues. Water consumption was measured daily with weekly recording of body weights, food consumption and the presence of clinical signs. Animals were observed for mortality daily. All tissues were weighed and either frozen for analysis of barium concentration or histologic examination. Clinical chemistry and hematology measurements were made. Statistical analysis of organ weights, hematology and clinical

chemistry variables were conducted.

Results

: No adverse effects were observed for food consumption, clinical signs,

Date 9 Nov 2005

body weight, hematology, serum enzymes, serum ions (Na, K, Ca), gross pathology and histopathology. Water consumption was slightly decreased in the high dose animals. A slight decrease in relative adminal weight in treated animals was observed versus controls. Increased dose (but not exposure duration) resulted in increases in barium concentrations in liver. skeletal muscle, heart and bone with the highest concentrations observed in bone.

Remark

Two previous studies showed that barium was associated with an effect on adrenals aftering the weight of the organ. Since barium results in the release of catecholamines from the adrenal medulia of cats and has a similar effect when bovine adrenals are perfused, the investigators postulated that barium acts on the chromatin cell membrane displacing calcium. Constant release of catecholamines results in depletion of intermediates and consequent atrophy.

Reliability

: (2)valid with restrictions

Comparable to guideline study with adequate documentation.

Reference

: Tardiff, R.G., M. Robinson, N. S. Ulmer. (1980) Subchronic Oral Toxicity of

BaCt2 in Rats. J. Environ, Path. Toxicol. 4:267-275.

Type

Sub-chronic

Species

Rats

Strain Sev

Sprague-Dawley Male/female

Number of animals

Route of admin.

Drinking water

Exposure period

36, 46 or 68 weeks

Frequency of treatment : Continuous Post exposure period

None

Doses

1, 10, 100, or 250 ppm Ba in drinking water for 36 weeks or 1, 10, or 100

ppm Ba for 68 weeks or 0 or 250 ppm Ba for 46 weeks

Control group

NOAEL

LOAEL

Method Year

Other Unknown

GLP

Test substance

As prescribed by 1.1-1.4

Yes, concurrent vehicle

Method

Results

This study utilized a number of non-standard measures and various dosing regimens. Animals were fed different diets with different levels of background barium present in the feed. 12 males per dose for 36 weeks;

10 males per dose for 68 weeks; 12 females per dose for 46 weeks

: There was a dose-related increase in retinal dystrophy and other studies do indicate that barium is absorbed in eye tissue. However, retinal dystrophy is a common degenerative disease in aging Sprague-Dawley rats and is affected by placement of lights and light penetration through plastic caging.

Remark

: Results of this study are difficult to interpret due to the confounding factors presented above.

Reliability

: (3) invalid

Due to relevant methodological deficiencies

Reference

: McCauley, et al. (year unknown) Chapter XVIII, page 197-210, photocopied

from an unknown book

Date 9 Nov 2005

5.5 GENETIC TOXICITY - "IN VITRO"

Type

Ames test

System of testing

Salmonella typhimurium strains TA 97, TA 98, TA 100, TA 1535 or TA 1537 Unknown

Test concentrations Cytotoxic concentr. Metabolic activation

Not determined With and without

Result Method Year

negative other 1994 No data

GLP Test substance

Other TS

Method Result

Not specified in summary report

At the concentration tested, there was no indication of any mutagenic

activity with or without exogenous metabolic activation

Remark

: Although not stated in the summary, the NTP study was likely conducted

according to GLP.

Test substance

Barium chloride dihydrate (2) valid with restrictions

Reliability

Acceptable study with adequate documentation similar to Guideline study

Reference

National Toxicology Program. (Jan. 1994) Toxicology and Carcinogenesis Studies of Barium Chloride Dihydrate (CAS No. 10326-27-9) in F-344/N

Rats and B6C3F1 Mice (Drinking Water Studies). TR-432.

Type

System of testing Test concentrations Escherichia coli WP_{*}(λ)

Cytotoxic concentr. Metabolic activation > 100 µg/well and 0.78 µg/well

Year GLP

1991 No

without

Test substance

As prescribed by 1,1-1,4

Method

Microscreen assay, Method of Rossman et al., 1984. Environ. Mut., 6:59.

Test substance

Reagent grade

Reliability

(2) valid with restrictions Comparable to guideline study with adequate documentation.

Reference

: Rossman, T.G., M. Molina, L. Meyer, P. Boone, C. B. Klein, Z. Wang, F. Li, W.C. Lin and P. L. Kinney. 1991. Performance of 133 compounds in the lambda prophage induction endpoint of the Microscreen assay and a comparison with S. typhimurium mutagenicity and rodent carcinogenicity

assays. Mut. Res., 260;349-367.

Type

Mouse lymphoma assay

System of testing Test concentrations Cultured mouse lymphoma cells - L5178/TK*/-Not specified

Cytotoxic concentr. Metabolic activation

Not determined : with and without

Recult Positive Year 1994 GLP No

Test substance

As prescribed by 1,1-1,4

Method

: Method of Clive et al., 1972. Mutation Res., 16:77-87.

Ċ Toxicity

Ö 10361-37-2

Date 9 Nov 2005

Result Mutagenic in the presence of metabolic activation (S-9); negative without activation and equivocal in other assays with S-9 activation (2) valid with restrictions

Reliability

Reference Acceptable study with adequate documentation.

Acceptable study with adequate documentation.

National Toxicology Program. (Jan. 1994) Toxicology and Carcinogenesis.

Studies of Barium Chloride Dihydrate (CAS No. 10326-27-9) in F-344/N.

Rats and B6C3F1 Mice (Drinking Water Studies). TR-432.

System of testing Chromosome aberration

Cytotoxic concentr. Test concentrations Mouse bone marrow cells 50, 160, 500, 1,600 or 5,000 µg/mL

Netabolic activation With and without

Result Method negative other

1983

Yes

9 Test substance As prescribed by 1.1-1.4 중

785UN

Remark Negative in two trials without activation and negative in two additional trials with exogenous activation with S-9.

Although not stated in the summary, the NTP study was likely conducted

Reliability according to GLP.
(2) valid with restrictions

Reference

Acceptable study with adequate documentation.

National Toxicology Program. (1983). Accessed 12/20/2004

http://mtp-apps.niehs.nih.gov/

System of testing Sister chromatid exchange assay

Cytotoxic concentr. Test concentrations 50, 160, 500, 1,600 or 5,000 µg/mL

Metabolic activation With and without

negative other

Result

Year 1983

C P Test substance As prescribed by 1.1-1.4 8

Result Negative in two trials without activation and negative in two additional trials with exogenous activation with S-9.

Although not stated in the summary, the NTP study was likely conducted

Reliability Remark

according to GLP.
(2) valid with restrictions

Reference Acceptable study with adequate documentation.

National Toxicology Program. (1983). Accessed 12/20/2004

http://ntp-apps.niehs.nih.gov/

5.6 GENETIC TOXICITY - "IN VIVO"

5. Toxicity

in 10361-37-2

Date 9 Nov 2005

5.7 CARCINOGENICITY

Species

Rats

Strain Sex

Other: F344/N Male/female

Route of admin.

Drinking water

Exposure period Frequency of treatment : 104 weeks (males) or 105 weeks (females) Continuous

Post exposure period

None

Doses

500, 1,250 or 2,500 ppm barium chloride dihydrate in drinking water corresponding to daily doses of 15, 30 or 60 mg Ba/kg body weight for

males and 15, 45 or 75 mg Ba/kg body weight for females.

Control group

Yes, concurrent vehicle

Result Method Year GLP

negative Other 1994 no data

Test substance

: As prescribed by 1.1-1.4

Method

: 60 per sex per dose; Measurements included survival, body weight, water consumption, clinical signs to toxicity, hematology, clinical chemistry and pathology. At 15 months, the plasma barium concentrations were determined. Barium levels on bone were also determined in the high dose

group.

Results

: Two-year survival was similar to controls. Final mean body weights were decreased at 2,500 ppm by 5% in males and 11% in females. Water consumption was decreased starting as early as week 5 in both sexes at the high dose. There were no clinical signs that could be related to treatment. No hematology or clinical chemistry changes were noted. In the special study at 15 months, plasma barium levels were significantly increased in males at the 1,250 and 2,500 ppm and in all treatment groups in females. Barium levels in bones of rats in the high dose group were 400 times greater than controls at the 15 month interval. There were no increases in neoplasms or non-neoplastic lesions that could be attributed to the test material. However, a dose-related increase occurred in adrenal medulla pheochromocytomas and in mononuclear cell leukemia in male rats.

Remark

: Although not stated in the summary, the NTP study was likely conducted

according to GLP.

Barium was classified as Group D (not classifiable as to human carcinogenicity) (information from EPA Integrated Risk Information System

(IRIS).

Reliability

(2) valid with restrictions

Comparable to guideline study with adequate documentation.

Reference

: National Toxicology Program. (Jan. 1994) Toxicology and Carcinogenesis Studies of Barium Chloride Dihydrate (CAS No. 10326-27-9) in F-344/N

Rats and B6C3F1 Mice (Drinking Water Studies). TR-432.

Species Strain

Mouse B6C3F1

Sex Route of admin. Male/female **Drinking water**

Exposure period

104 weeks (females) or 103 weeks (males)

Frequency of treatment: Post exposure period

Continuous None

Toxicity

8 10361-37-2

Date 9 Nov 2005

500, 1,250 or 2,500 ppm barium chioride dihydrate in drinking water corresponding to daily doses of 30, 75 or 160 mg Ba/kg body weight for males and 40, 90 or 200 mg Ba/kg body weight for females.

Result Control group Negative Yes, concurrent vehicle

S S Year 1994 No data

Test substance As prescribed by 1.1-1.4

Method Measurements included survival, body weight, water consumption, clinical

months, the plasma barium concentrations were determined. signs to toxicity, hematology, clinical chemistry and pathology. At 15

Results

special study at 15 months, plasma barium levels were significantly increased in all exposure levels. There were no increases in neoplasms. than control due to renal toxicity. Final mean body weights were decreased at 2,500 ppm by 9% in males and 12% in females. Water consumption was treatment. No hematology or clinical chemistry changes were noted. In the similar to controls. There were no clinical signs that could be related to Two-year survival in both sexes at the high does was significantly lower

nephropathy in both sexes. male mice at the high dose. but the incidence of hepatocellular adenoma was significantly decreased in There was also a dose-related increase in

Although not stated in the summary, the NTP study was likely conducted

Barium was classified as Group D (not classifiable as to human carcinogenicity) (information from EPA Integrated Risk Information System according to GLP

(IRIS) (2) valid with restrictions

Reliability

Remark

Reference Comparable to guideline study with adequate documentation.

National Toxicology Program. (Jan. 1994) Toxicology and Carcinogenesis Studies of Barium Chloride Dihydrate (CAS No. 10326-27-9) in F-344/N Rats and B6C3F1 Mice (Drinking Water Studies). TR-432.

TOXICITY TO FERTILITY

5,8,1

A One generation study

Strain Rat Other: F344/N

Males/females Drinking water

Frequency of treatment Exposure period Route of admin. Continuous 60 days prior to mating

Premating exposure Male: 60 days

Number of Gen Studies Female: 60 days Through delivery

Control group Yes, concurrent vehicle 1,000, 2,000 or 4,000 mg/L

3

Doses

Duration period

Result

Hethod other 1992

Test substance No data other TS 5. Toxicity

in 10361-37-2

Date 9 Nov 2005

: Rats were exposed for 60 days followed by an 8-day mating period. Method

Measurements included: weekly body weight, water consumption, fertility index, fetal and maternal toxicity, developmental toxicity in fetus and

neonates

: There were no indications of reproductive or developmental toxicity. Results

However, there were below normal pregnancy rates in all groups including

unexposed controls.

Remark A 1977 study by Tarasenko resulted in a shortening of the estrus cycle in

rats exposed to 13.4 mg of barium carbonate/m³ for 4 months when compared to controls. This study also found an alteration in the proportion of mature and dying ovarian follicles and an increase in underdeveloped offspring that showed considerable mortality and slow weight gain during the first two post-natal months. These results were not seen at a lower

dose of 3.1 mg/m3 (summarized in WHO document)

Test substance Reliability

Barium chloride dihydrate

(2) valid with restrictions

Sufficient experimental details present as a summary in a peer reviewed

Reference : WHO Environmental Health Criteria 107, Barium (1990)

Type One generation study

Species Mouse Strain B6C3F1 Sex Males/females Route of admin. **Drinking water**

Exposure period 60 days prior to mating Continuous

Frequency of treatment: Premating exposure

Male: 60 days

Duration Number of Gen Studies Female: 60 days Through delivery

Doses

One

Control group

period

Method

Year

500, 1,000 or 2,000 mg/L Yes, concurrent vehicle

Result

other 1992

GLP Test substance

No data other TS

Method

Mice were exposed for 60 days followed by an 8-day mating period. Measurements included: weekly body weight, water consumption, fertility index, fetal and maternal toxicity, developmental toxicity in fetus and

neonates

Results : There were no indications of reproductive or developmental toxicity.

However, there were below normal pregnancy rates in all groups including

unexposed controls.

Test substance

: Barium chloride dihydrate : (2) valid with restrictions

Reliability

Sufficient experimental details present as a summary in a peer reviewed

: WHO Environmental Health Criteria 107, Barium (1990) Reference

5.8.2 DEVELOPMENTAL TOXICITY/ TERATOGENICITY

Species

ID 10361-37-2 5. Toxicity

Date 9 Nov 2005

: male/female Sex Strain : other: F344/N Route of admin. : Drinking water

Exposure period : 60 days prior to mating

Frequency of treatm. : Continuous **Duration of test** : Through delivery

: 1,000, 2,000 or 4,000 mg/L Doses Control group ves, concurrent vehicle

NOAEL maternal tox. NOAEL teratogen.

Other Method 1992 Year **GLP** Yes Other TS Test substance

Method Rats were exposed for 60 days followed by an 8-day mating period.

> Measurements included weekly body weight, water consumption, fertility index, fetal and maternal toxicity, developmental toxicity in fetus and

neonates.

Result : There was no indications of reproductive or developmental toxicity.

: Barium chloride dihydrate Test substance : (2) valid with restrictions Reliability

Sufficient experimental details present as a summary in a peer reviewed

Reference WHO Environmental Health Criteria 107, Barium (1990)

Critical study for SIDS endpoint Flag

Species : Mouse male/female Sex Strain **B6C3F1** : Drinking water Route of admin.

Exposure period : 60 days prior to mating : Continuous

Frequency of treatm. Duration of test : Through delivery Doses 500, 1,000, or 2,000 mg/L

Control group yes, concurrent vehicle NOAEL maternal tox.

NOAEL teratogen. Method Other 1992 Year GLP Yes Test substance Other TS

Method : Mice were exposed for 60 days followed by an 8-day mating period.

Measurements included weekly body weight, water consumption, fertility index, fetal and maternal toxicity, developmental toxicity in fetus and

neonates.

: There was no indications of reproductive or developmental toxicity. Result

Test substance Barium chloride dihydrate : (2) valid with restrictions Reliability

Sufficient experimental details present as a summary in a peer reviewed

: WHO Environmental Health Criteria 107, Barium (1990) Reference

: Critical study for SIDS endpoint Flag

5. Toxicity

ID 10361-37-2

Date 9 Nov 2005

5.8.3 TOXICITY TO REPRODUCTION

....

1. General Information

ID 7727-43-7

Date 10 Nov 2005

1.0 SUBSTANCE INFORMATION

Generic Name Chemical Name : Barium sulfate : Barium sulfate

CAS Registry No.

7727-43-7

Component CAS Nos.

:

EINECS No.

. :

Structural Formula

BaSO₄

Additional description

: Fine, heavy, odorless powder or polymorphous crystals; occurs in nature as

the mineral barite

Molecular Weight

: 233.39

Synonyms and Tradenames

: Barium sulphate; RTECS CR0600000; Radiopaque; Telebar; Microtrast; E-

Z-Plague; heavy spar, HSDB 5041, ICSC 0827

: ATSDR, 1992 (Agency for Toxic Substances and Disease Registry,

Toxicological Profile for Barium and Compounds, July 1992)

References

O'Neil, M.J., Smith, A., Heckelman, P.E., and J.R. Obenchain (eds.). 2002. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Ed. Merck & Co., Inc., Whitehouse Station, NJ. (molecular weight

value)

ID 7727-43-7

Date 10 Nov 2005

2.1 **MELTING POINT**

Value

= 1580 °C

Decomposition

Sublimation

Method Year

other 1973

GLP

: No

Test substance

: As prescribed by 1.1-1.4

Remark

: Data abstracted from Perry and Chilton

Reliability

: (2) valid with restrictions

Reference

Source is peer-reviewed published document.

: ATSDR, 1992 (Agency for Toxic Substances and Disease Registry,

Toxicological Profile for Barium and Compounds, July 1992)

2.2 **BOILING POINT**

Value

: = 1149 °C (monoclinic transition point)

Decomposition

Method

other

Year

1983

GLP

No

Test substance

As prescribed by 1.1-1.4

Remark

: Data abstracted from Parmeggiani

Reliability

: (2) valid with restrictions

Reference

Source is peer-reviewed published document. : ATSDR, 1992 (Agency for Toxic Substances and Disease Registry,

Toxicological Profile for Barium and Compounds, July 1992)

2.3 DENSITY

Type **Value** density

Method

 $= 4.50 \text{ g/cm}^3$ other

Year GLP

1983

Test substance

: As prescribed by 1.1-1.4

Reliability

: (2) valid with restrictions

Source is peer-reviewed published document.

Reference

: ATSDR, 1992 (Agency for Toxic Substances and Disease Registry,

Toxicological Profile for Barium and Compounds, July 1992)

VAPOR PRESSURE

PARTITION COEFFICIENT 2.5

Partition coefficient

Log Pow

ID 7727-43-7

Date 10 Nov 2005

pH value

Method

other

Year **GLP**

2002

Test substance

As prescribed by 1.1-1.4

Remark

: Not applicable because barium sulfate is nearly insoluble in water and

alcohol

Reliability

: (2) valid with restrictions

Source is well established data compendium

Reference

: O'Neil, M.J., Smith, A., Heckelman, P.E., and J.R. Obenchain (eds.). 2002. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals.

13th Ed. Merck & Co., Inc., Whitehouse Station, NJ. (information on

solubility)

2.6.1 **SOLUBILITY IN DIFFERENT MEDIA**

Solubility in

Guideline/method

water

Value

at °C

ρН

value

concentration

°C

Temperature effects

Examine different pol.

PKa

at °C

Description

Stable

Deg. product

other

Method Year **GLP**

2002

Test substance

As prescribed by 1.1-1.4

Result

Practically insoluble in water (one gram dissolves in 400,000 parts) (2) valid with restrictions

Reliability

Source is well established data compendium.

Reference

O'Neil, M.J., Smith, A., Heckelman, P.E., and J.R. Obenchain (eds.). 2002.

The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals.

13th Ed. Merck & Co., Inc., Whitehouse Station, NJ.

29 **FLAMMABILITY**

Result

Non flammable

Method

other

Year

2005

Test substance

As prescribed by 1.1-1.4

Reliability

(2) valid with restrictions

Reference

Data taken from a secondary literature source (electronic database)

http://inchem.org/documents/icsc/icsc/eics0827.htm (accessed 11/10/05)

ID 7727-43-7

Date 10 Nov 2005

3.1.1 PHOTODEGRADATION

3.1.2 STABILITY IN WATER

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

Type

Media : % (Fugacity Model Level I)

Constitution

**Constituti

Water : % (Fugacity Model Level I)
Soil : % (Fugacity Model Level I)
Biota : % (Fugacity Model Level II/III)
Soil : % (Fugacity Model Level II/III)

Year : 2005

Test substance : As prescribed by 1.1-1.4

Method : EPIWIN

Result : Level III Fugacity Model:

Mass Amount Half-Life **Emissions** (percent) (kg/hr) (hr) 1e+005 1.42e-006 Air 1000 Water 47.4 900 1000 Soil 52.5 900 1000 Sediment 0.091 3.6e+003

Persistence Time: 804 hr

Reliability : (2) valid with restrictions

Data were obtained by modeling.

Reference : EPIWIN (ver 3.11) (2005)

3.3.2 DISTRIBUTION

3.5 BIODEGRADATION

4.1 ACUTE TOXICITY TO FISH

Type

Species : Molty (Poecillia latipinna.)

Exposure period : 96 hours Unit : ug/L

NOEC

LCO : = 59,000,000

LC50 LC100

Limit test

Analytical monitoring : No data
Method : other
Year : 1975
GLP : No

Test substance : As prescribed by 1.1-1.4

. . .

ID 7727-43-7

Date 10 Nov 2005

Result

: Not acutely toxic to Mollies

Remark

: This is the only aquatic study found, probably due to the fact that barium sulfate is virtually insoluble in water (data derived from U.S. EPA. AQUIRE

database, 2005)

Reliability

: (2) valid with restrictions

Although this is not a Guideline study and few experimental details are present, the results seem credible due to the physical properties of the test

material. Data taken from a secondary literature source (electronic

Reference

: U.S. EPA AQUIRE database, 2005 (accessed on 11/10/2005))

4.2 **ACUTE TOXICITY TO AQUATIC INVERTEBRATES**

Type

Flow-through

Species 4 1

Yellow Rock Crab (Cancer anthonyi)

Exposure period

7 day

NOEC

EC0

LC50

EC100

Limit test **Analytical monitoring**

Method Year GLP

No data other 1978 No

Test substance

As prescribed by 1.1-1.4

Method

Flow-through; hatch and embryo

Result

LC50 = 10,000 (hatch) and LC50 = 100,000 µg/L (embryo); Not acutely

toxic

Reliability

(2) valid with restrictions

Although few experimental details were found, the results seem credible based on the lack of water solubility. Data taken from a secondary

literature source (electronic database)

Reference

U.S. EPA AQUIRE database, 2005 (accessed on 11/10/05 via

http://www.pesticideinfo.org/List_AquireAll.jsp?Rec_ld=PC33796&Taxa_Gr

oup=Crustaceans)

Type

Static

Species

Water flea (Daphnia magna)

Exposure period Unit

48 Hr ug/L

other

1989

NOEC

EC0

32,000 µg/L (48 Hr)

LC50

EC100

Limit test

Analytical monitoring

Method Year **GLP**

Test substance

No As prescribed by 1.1-1.4

Result

24-hr EC0 = 52,820 ug/L; Not acutely toxic

Remark

Another study resulted in 24 and 48 hour EC50 of 4.64 and 2.81 mg/L,

in 7727-43-7

Date 10 Nov 2005

respectively (Khangarot and Ray, 1989)

Reliability

: (2) valid with restrictions

Comparable to a Guideline Study

Reference

: U.S. EPA AQUIRE database, 2005 (accessed on 11/10/05 via

http://www.pesticideinfo.org/List_AquireAll.jsp?Rec_Id=PC33796&Taxa_Gr

oup=Zooplankton)

Khangarot, B.S. and P. K. Ray. (1989) Investigation of Correlation between Physicochemical Properties of Metals and their Toxicity to the Water Flea

Daphnia magna Straus. Ecotoxicol. Environ. Saf. 38:109-120.

TOXICITY TO AQUATIC PLANTS E.G. ALGAE 4.3

TOXICOKINETICS, METABOLISM AND DISTRIBUTION 5.0

in vitro/in vivo

In vivo

Type

Distribution

Species

Number of animals

Males

Females

Doses

Males

Females

Vehicle

Route of administration

Exposure time

Product type guidance Decision on results on acute tox, tests

Adverse effects on prolonged exposure

Half-lives

bone Estimated to be about 50 days

Toxic behavior Deg. product

Deg. products CAS#

Method Year

GLP

Other

2005

Test substance

As prescribed by 1.1-1.4

Remark

: Barium sulfate is administered as a drug either orally or rectally because it has radiopaque properties that aid in diagnostic X-ray imaging. Most of the drug is excreted in the feces within a few days and is virtually absent within two weeks. Residual amounts of barium sulfate may be retained in the bone or teeth since it can mimic calcium and be absorbed by calcified tissue. Inhaled barium sulfate dust, not cleared by ciliary action, may accumulate in the lungs in sufficient quantities to cause baritosis (benign pneumoconiosis). Barium clearance is increased by intravenous administration of saline solutions. In Sprague-Dawley rats, fasting

increased the concentration of barium in the blood.

ID 7727-43-7

Date 10 Nov 2005

Reliability

: (2) valid with restrictions

Credible information consistent with physical properties; Data taken from a

secondary literature source (electronic database)

Reference

Hazardous Substances Data Bank http://toxnet.nlm.nih.gov

(accessed 8/16/05)

http://risk.lsd.oml.gov/tox/profiles/barium_f_V1.shtml#te (accessed

11/10/05)

In vitro/in vivo

In vivo

Type

Distribution

Species

Rat

Number of animals

Males

Females

Doses

Males

40 mg

Females

40 mg

Vehicle

Route of administration:

Exposure time

Inhalation 60 days

Product type guidance

Decision on results on

acute tox. tests Adverse effects on

prolonged exposure

Half-lives

Toxic behavior

Dea, product

Deg. products CAS#

Method Year

Other 1990

GLP

Test substance

No

As prescribed by 1.1-1.4

Method Result

Two-month inhalation exposure followed by 4 week post-exposure period Barium levels increased in the bones (particularly the jaw and femur), but the rate of accumulation decreased with continued exposure. The barium content in the lungs was highest two weeks after exposure initiation, but

decreased over the next four weeks. However, it increased again during the following 4-week non-exposure period. No increase in barium was noted in lymph nodes.

Reliability

(2) valid with restrictions

Results are generally consistent with other known information regarding barium metabolism. Data taken from a secondary literature source

(electronic database)

Reference

http://toxnet.nlm.nih.gov (accessed 8/16/05)

5.1.1 ACUTE ORAL TOXICITY

Type Value LD50

Species

Rat

Strain

Other: CBL-Wistar

5. Toxicity

ID 7727-43-7

Date 10 Nov 2005

Sax

No data

Vehicle

Number of animals

Other: Assumed to be water administered in 150% (wt/v) suspension

Doses Method 188, 225, 263, 300, 338 or 375 g/Kg

Year

other 1985 No

GLP Test substance

As prescribed by 1.1-1.4

Method

Single dose administered intragastrically. Young rats weighing 130-160 grams were fasted for 16 hours prior to dose administration. Clinical measurements were made for 3-14 days or until death occurred.

Result

The interval to death decreased with increasing barium dosage.

Remark

The cause of death was determined to be stomach rupture due to dosing

errors.

Reliability

(3) invalid Dosing errors confounded the study

Reference

USEPA Drinking Water Criteria Document for Barium (1985)

5.1.2 ACUTE INHALATION TOXICITY

ACUTE DERMAL TOXICITY

Remark

: Not expected to cross intact skin due to the low water solubility and physical

form of the test material

Reliability

(2) valid with restrictions

Source is peer-reviewed published document.

Reference

ATSDR, 1992 (Agency for Toxic Substances and Disease Registry,

Toxicological Profile for Barium and Compounds, July 1992)

- 5.4 REPEATED DOSE TOXICITY
- 5.5 **GENETIC TOXICITY - "IN VITRO"**
- 5.6 **GENETIC TOXICITY - "IN VIVO"**
- CARCINOGENICITY 5.7
- **TOXICITY TO FERTILITY** 5.8.1
- **DEVELOPMENTAL TOXICITY/ TERATOGENICITY**

ID 7727-43-7

Date 10 Nov 2005

5.10

EXPOSURE EXPERIENCE

Remark

: Accidental exposure: Children had barium sulfate accidentally injected into the eye under very high pressure after cutting into the centers of certain types of golf balls. X-ray diffraction and electron probe exams identified barium sulfate in the extra-ocular tissue. Little injury resulted. Other details were not available.

Year

1986

CLP

no

Test substance

Reliability

Barium sulfate (possibly mixed with other compounds)

There is some question about the identity of substance involved in this

accidental exposure.

Reference

: Grant, W.M. (1986) Toxicology of the Eye. 3rd Edition. Springfield: Charles

C. Thomas Publisher, p. 134

201-16118B2

RECEIVED

05 DEC 28 PM 3: 36

APPENDIX 2 EPIWIN SUMMARIES

```
CHEM
MOL FOR: C36 H70 O4 Bal
MOL WT : 704.28
----- EPI SUMMARY (v3.11) ------
Physical Property Inputs:
   Water Solubility (mg/L):
                            3.5
   Vapor Pressure (mm Hq) :
   Henry LC (atm-m3/mole) :
   Log Kow (octanol-water):
   Boiling Point (deg C) :
   Melting Point (deg C) :
                            160.00
Log Octanol-Water Partition Coef (SRC):
   Log Kow (KOWWIN v1.67 estimate) = 15.14
Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPWIN v1.41):
   Boiling Pt (deg C): 661.06 (Adapted Stein & Brown method)
   Melting Pt (deg C): 287.83 (Mean or Weighted MP)
   VP(mm Hg, 25 deg C): 7.52E-014 (Modified Grain method)
   MP (exp database): 250 deg C
Water Solubility Estimate from Log Kow (WSKOW v1.41):
   Water Solubility at 25 deg C (mg/L): 3.589e-012
      log Kow used: 15.14 (estimated)
      melt pt used: 160.00 deg C
Water Sol Estimate from Fragments:
   Wat Sol (v1.01 est) = 7.0428e-007 \text{ mg/L}
ECOSAR Class Program (ECOSAR v0.99g):
   Class(es) found:
      Neutral Organics
Henrys Law Constant (25 deg C) [HENRYWIN v3.10]:
  Bond Method: Incomplete
  Group Method: Incomplete
Henrys LC [VP/WSol estimate using EPI values]: 1.991E-014 atm-m3/mole
Probability of Rapid Biodegradation (BIOWIN v4.01):
   Linear Model
                 : 0.6291
   Non-Linear Model
                         0.0354
Expert Survey Biodegradation Results:
   Ultimate Survey Model: 2.2395 (months
                         3.3698 (days-weeks )
   Primary Survey Model :
Readily Biodegradable Probability (MITI Model):
   Linear Model : 0.1990
   Non-Linear Model
                          0.0176
Atmospheric Oxidation (25 deg C) [AopWin v1.91]:
  Hydroxyl Radicals Reaction:
     OVERALL OH Rate Constant = 42.9098 E-12 cm3/molecule-sec
     Half-Life =
                    0.249 Days (12-hr day; 1.5E6 OH/cm3)
     Half-Life =
                    2.991 Hrs
  Ozone Reaction:
     No Ozone Reaction Estimation
```

Soil Adsorption Coefficient (PCKOCWIN v1.66):

Koc : 9.225E+008 Log Koc: 8.965

Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN v1.67]: Rate constants can NOT be estimated for this structure!

BCF Estimate from Log Kow (BCFWIN v2.15): Log BCF = 0.500 (BCF = 3.162) log Kow used: 15.14 (estimated)

Volatilization from Water:

Henry LC: 1.99E-014 atm-m3/mole (calculated from VP/WS)

Half-Life from Model River: 7.804E+010 hours (3.252E+009 days)
Half-Life from Model Lake: 8.513E+011 hours (3.547E+010 days)

Removal In Wastewater Treatment (recommended maximum 99%):

Total removal: 94.04 percent
Total biodegradation: 0.78 percent
Total sludge adsorption: 93.26 percent
Total to Air: 0.00 percent

Level III Fugacity Model:

	Mass Amount	Half-Life	Emissions
	(percent)	(hr)	(kg/hr)
Air	0.0807	5.98	1000
Water	2.32	1.44e+003	1000
Soil	30.7	1.44e+003	1000
Sediment	66.9	5.76e+003	0
Y			

Persistence Time: 2.65e+003 hr

```
CHEM : Octadecanoic acid
CAS NUM: 000057-11-4
MOL FOR: C18 H36 O2
MOL WT : 284.49
----- EPI SUMMARY (v3.11)
 Physical Property Inputs:
    Water Solubility (mg/L):
    Vapor Pressure (mm Hg) :
    Henry LC (atm-m3/mole) :
    Log Kow (octanol-water):
    Boiling Point (deg C) :
    Melting Point (deg C) :
 Log Octanol-Water Partition Coef (SRC):
    Log Kow (KOWWIN vl.67 estimate) = 7.94
    Log Kow (Exper. database match) = 8.23
      Exper. Ref: Sangster (1993)
Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPWIN v1.41):
   Boiling Pt (deg C): 382.05 (Adapted Stein & Brown method)
Melting Pt (deg C): 132.96 (Mean or Weighted MP)
VP(mm Hg, 25 deg C): 8.31E-006 (Modified Grain method)
    MP (exp database): 68.8 deg C
    BP
        (exp database):
                         383 deg C
    VP (exp database):
                        7.22E-07 mm Hg at 25 deg C
Water Solubility Estimate from Log Kow (WSKOW v1.41):
    Water Solubility at 25 deg C (mg/L): 0.003512
       log Kow used: 8.23 (expkow database)
       no-melting pt equation used
    Water Sol (Exper. database match) = 0.597 mg/L (25 deg C)
       Exper. Ref: YALKOWSKY, SH & DANNENFELSER, RM (1992)
Water Sol Estimate from Fragments:
   Wat Sol (v1.01 est) = 0.0093429 \text{ mg/L}
   Wat Sol (Exper. database match) = 0.60
      Exper. Ref: YALKOWSKY, SH & DANNENFELSER, RM (1992)
ECOSAR Class Program (ECOSAR v0.99g):
   Class(es) found:
      Surfactants-anionic-acid
Henrys Law Constant (25 deg C) [HENRYWIN v3.10]:
  Bond Method: 5.10E-005 atm-m3/mole Group Method: 7.39E-005 atm-m3/mole
  Exper Database: 4.76E-07 atm-m3/mole
Henrys LC [VP/WSol estimate using EPI values]: 8.857E-004 atm-m3/mole
Probability of Rapid Biodegradation (BIOWIN v4.01):
   Linear Model : 0.7932
   Non-Linear Model
                            0.8109
Expert Survey Biodegradation Results:
   Ultimate Survey Model: 3.2334 (weeks
   Primary Survey Model: 4.0919 (days
Readily Biodegradable Probability (MITI Model):
   Linear Model : 0.8380
```

```
Non-Linear Model : 0.9120
Atmospheric Oxidation (25 deg C) [AopWin v1.91]:
  Hydroxyl Radicals Reaction:
     OVERALL OH Rate Constant = 22.4804 E-12 cm3/molecule-sec
    Half-Life = 0.476 Days (12-hr day; 1.5E6 OH/cm3)
     Half-Life =
                    5.710 Hrs
  Ozone Reaction:
    No Ozone Reaction Estimation
Soil Adsorption Coefficient (PCKOCWIN v1.66):
    Koc : 1.167E+004
Log Koc: 4.067
Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN v1.67]:
   Rate constants can NOT be estimated for this structure!
BCF Estimate from Log Kow (BCFWIN v2.15):
   Log BCF = 1.000 (BCF = 10)
     log Kow used: 8.23 (expkow database)
Volatilization from Water:
   Henry LC: 4.76E-007 atm-m3/mole (Henry experimental database)
   Half-Life from Model River: 2076 hours (86.51 days)
  Half-Life from Model Lake : 2.279E+004 hours
                                                 (949.7 days)
Removal In Wastewater Treatment (recommended maximum 99%):
  Total removal:
                      94.02 percent
                            0.78 percent
93.25 percent
  Total biodegradation:
  Total sludge adsorption:
  Total to Air:
                               0.00 percent
Level III Fugacity Model:
         Mass Amount Half-Life Emissions
           (percent)
                         (hr)
                                     (kg/hr)
 Air
           0.676
                           11.4
                                       1000
 Water
           7.19
                           360
                                       1000
```

360

1.44e+003 0

1000

Soil

28.9

Persistence Time: 640 hr

Sediment 63.3

```
SMILES : [Ba]
CHEM : BARIUM
CAS NUM: 007440-39-3
MOL FOR: Bal
MOL WT : 137.33
_____ EPI SUMMARY (v3.11) -----
 Physical Property Inputs:
   Water Solubility (mg/L):
   Vapor Pressure (mm Hg) :
   Henry LC (atm-m3/mole) :
   Log Kow (octanol-water):
   Boiling Point (deg C) :
   Melting Point (deg C) :
 Log Octanol-Water Partition Coef (SRC):
   Log Kow (KOWWIN v1.67 estimate) = 0.23
 Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPWIN v1.41):
    Boiling Pt (deg C): 482.98 (Adapted Stein & Brown method)
   Melting Pt (deg C): 188.60 (Mean or Weighted MP)
    VP(mm Hg, 25 deg C): 0 (Modified Grain method)
   MP (exp database): 710 deg C
    BP (exp database): 1600 deg C
 Water Solubility Estimate from Log Kow (WSKOW v1.41):
    Water Solubility at 25 deg C (mg/L): 5.476e+004
       log Kow used: 0.23 (estimated)
      no-melting pt equation used
 Water Sol Estimate from Fragments:
   Wat Sol (v1.01 est) = 2.4377e+005 \text{ mg/L}
 ECOSAR Class Program (ECOSAR v0.99g):
   Class(es) found:
      Neutral Organics
 Henrys Law Constant (25 deg C) [HENRYWIN v3.10]:
  Bond Method: 2.45E-002 atm-m3/mole
  Group Method:
                 Incomplete
 Henrys LC [VP/WSol estimate using EPI values]: not available
 Probability of Rapid Biodegradation (BIOWIN v4.01):
   Linear Model
                  : 0.6822
   Non-Linear Model
                          0.7424
 Expert Survey Biodegradation Results:
   Ultimate Survey Model: 2.8957 (weeks
                          3.6496 (days-weeks )
   Primary Survey Model:
 Readily Biodegradable Probability (MITI Model):
   Linear Model
                     : 0.3036
   Non-Linear Model
                          0.1917
Atmospheric Oxidation (25 deg C) [AopWin v1.91]:
  Hydroxyl Radicals Reaction:
     OVERALL OH Rate Constant = 0.0000 E-12 cm3/molecule-sec
     Half-Life =
  Ozone Reaction:
     No Ozone Reaction Estimation
```

```
Soil Adsorption Coefficient (PCKOCWIN v1.66):
```

Koc : 14.3 Log Koc: 1.155

Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN v1.67]: Rate constants can NOT be estimated for this structure!

BCF Estimate from Log Kow (BCFWIN v2.15): Log BCF = 0.500 (BCF = 3.162) log Kow used: 0.23 (estimated)

Volatilization from Water:

Henry LC: 0.0245 atm-m3/mole (estimated by Bond SAR Method) Half-Life from Model River: 1.224 hours

Half-Life from Model Lake: 111.6 hours (4.651 days)

Removal In Wastewater Treatment (recommended maximum 99%):

Total removal: 90.51 percent
Total biodegradation: 0.02 percent
Total sludge adsorption: 0.40 percent
Total to Air: 90.09 percent

Level III Fugacity Model:

	Mass Amount	Half-Life	Emissions
	(percent)	(hr)	(kg/hr)
Air	37.9	1e+005	1000
Water	55.8	360	1000
Soil	6.18	360	1000
Sediment	0.0944	1.44e+003	0
13 m m m d	A	00.1	

Persistence Time: 180 hr

```
SMILES : 01S(=0)(=0)0[Ba]1
CHEM : BARIUM SULFATE
CAS NUM: 007727-43-7
MOL FOR: 04 SI Bal
MOL WT : 233.38
                     ----- EPI SUMMARY (v3.11) -----
 Physical Property Inputs:
    Water Solubility (mg/L):
    Vapor Pressure (mm Hg) :
    Henry LC (atm-m3/mole) :
    Log Kow (octanol-water):
    Boiling Point (deg C) :
    Melting Point (deg C)
 Log Octanol-Water Partition Coef (SRC):
    Log Kow (KOWWIN v1.67 estimate) = 0.63
 Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPWIN v1.41):
    Boiling Pt (deg C): 659.07 (Adapted Stein & Brown method)
    Melting Pt (deg C): 286.90 (Mean or Weighted MP)
    VP(mm Hg, 25 deg C): 5.48E-019 (Modified Grain method)
    MP (exp database): 560 dec deg C
 Water Solubility Estimate from Log Kow (WSKOW v1.41):
    Water Solubility at 25 deg C (mg/L): 8470
       log Kow used: 0.63 (estimated)
       no-melting pt equation used
     Water Sol (Exper. database match) = 3.2e+004 mg/L (20 deg C)
        Exper. Ref: SHIU, WY ET AL. (1990)
 Water Sol Estimate from Fragments:
    Wat Sol (v1.01 est) = 7084.2 \text{ mg/L}
    Wat Sol (Exper. database match) - 32000.00
       Exper. Ref: SHIU, WY ET AL. (1990)
 ECOSAR Class Program (ECOSAR v0.99g):
    Class(es) found:
       Neutral Organics
 Henrys Law Constant (25 deg C) [HENRYWIN v3.10]:
   Bond Method: Incomplete
   Group Method:
                  Incomplete
 Henrys LC [VP/WSol estimate using EPI values]: 1.987E-023 atm-m3/mole
 Probability of Rapid Biodegradation (BIOWIN v4.01):
    Linear Model
                       :
                            0.6364
    Non-Linear Model
                            0.4242
 Expert Survey Biodegradation Results:
    Ultimate Survey Model: 2.6834 (weeks-months)
    Primary Survey Model :
                            3.5110 (days-weeks )
 Readily Biodegradable Probability (MITI Model):
    Linear Model
                            0.0178
                        2.
                            0.0146
    Non-Linear Model
 Atmospheric Oxidation (25 deg C) [AopWin v1.91]:
   Hydroxyl Radicals Reaction:
     OVERALL OH Rate Constant =
                                  0.0000 E-12 cm3/molecule-sec
```

Half-Life = Ozone Reaction: No Ozone Reaction Estimation

Soil Adsorption Coefficient (PCKOCWIN v1.66);

Koc : 14.55 Log Koc: 1.163

Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN v1.67]: Rate constants can NOT be estimated for this structure!

BCF Estimate from Log Kow (BCFWIN v2.15): Log BCF = 0.500 (BCF = 3.162)log Kow used: 0.63 (estimated)

Volatilization from Water:

Henry LC: 1.99E-023 atm-m3/mole (calculated from VP/WS) Half-Life from Model River: 4.502E+019 hours (1.876E+018 days)
Half-Life from Model Lake: 4.911E+020 hours (2.046E+019 days)

Removal In Wastewater Treatment (recommended maximum 99%):

Total removal: 1.86 percent Total biodegradation: 0.09 percent 1.77 percent 0.00 percent Total sludge adsorption: Total to Air:

Level III Fugacity Model:

	Mass Amount	Half-Life	Emissions
	(percent)	(hr)	(kg/hr)
Air	1.42e-006	1e+005	1000
Water	47.4	900	1000
Soil	52.5	900	1000
Sediment	0.091	3.6e+003	0
Dareic	tence Time. 9	O.A. bum	-

Persistence Time: 804 hr

```
SMILES : CL[Ba]CL
CHEM : Barium chloride (BaCl2)
CAS NUM: 010361-37-2
MOL FOR: CL2 Bal
MOL WT : 208.23
 EPI SUMMARY (v3.11)
 Physical Property Inputs:
    Water Solubility (mg/L):
    Vapor Pressure (mm Hg) :
    Henry LC (atm-m3/mole) :
    Log Kow (octanol-water):
    Boiling Point (deg C) :
    Melting Point (deg C) :
 Log Octanol-Water Partition Coef (SRC):
    Log Kow (KOWWIN v1.67 estimate) = 0.85
 Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPWIN v1.41):
    Boiling Pt (deg C): 515.63 (Adapted Stein & Brown method)
    Melting Pt (deg C): 205.22 (Mean or Weighted MP)
    VP(mm Hg, 25 deg C): 4.42E-010 (Modified Grain method)
 Water Solubility Estimate from Log Kow (WSKOW v1.41):
    Water Solubility at 25 deg C (mg/L): 7468
       log Kow used: 0.85 (estimated)
       no-melting pt equation used
 Water Sol Estimate from Fragments:
    Wat Sol (v1.01 est) = 98484 \text{ mg/L}
 ECOSAR Class Program (ECOSAR v0.99g):
    Class(es) found:
      Neutral Organics
 Henrys Law Constant (25 deg C) [HENRYWIN v3.10]:
  Bond Method:
                Incomplete
   Group Method:
                 Incomplete
 Henrys LC [VP/WSol estimate using EPI values]: 1.622E-014 atm-m3/mole
 Probability of Rapid Biodegradation (BIOWIN v4.01):
   Linear Model : 0.6484
   Non-Linear Model
                      : 0.5129
Expert Survey Biodegradation Results:
   Ultimate Survey Model: 2.7390 (weeks-months)
   Primary Survey Model:
                           3.5473 (days-weeks )
 Readily Biodegradable Probability (MITI Model):
   Linear Model
                     : 0.0926
   Non-Linear Model
                       :
                           0.0297
Atmospheric Oxidation (25 deg C) [AopWin v1.91]:
  Hydroxyl Radicals Reaction:
     OVERALL OH Rate Constant = 0.0000 E-12 cm3/molecule-sec
     Half-Life =
  Ozone Reaction:
     No Ozone Reaction Estimation
Soil Adsorption Coefficient (PCKOCWIN v1.66):
```

Koc : 23.74 Log Koc: 1.376

Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN v1.67]: Rate constants can NOT be estimated for this structure!

BCF Estimate from Log Kow (BCFWIN v2.15): Log BCF = 0.500 (BCF = 3.162) log Kow used: 0.85 (estimated)

Volatilization from Water:

Henry LC: 1.62E-014 atm-m3/mole (calculated from VP/WS)
Half-Life from Model River: 5.21E+010 hours (2.171E+009 days)
Half-Life from Model Lake: 5.684E+011 hours (2.368E+010 days)

Removal In Wastewater Treatment (recommended maximum 99%):

Total removal: 1.87 percent Total biodegradation: 0.09 percent Total sludge adsorption: 1.78 percent Total to Air: 0.00 percent

Level III Fugacity Model:

	Mass Amount	Half-Life	Emissions
	(percent)	(hr)	(kg/hr)
Air	9.42e-006	1e+005	1000
Water	46	900	1000
Soil	53.9	900	1000
Sediment	0.0906	3.6e+003	0
Domeia	**** Mina. A	7.5 1	

Persistence Time: 813 hr

RECEIVED OPPT COLO

05 DEC 28 PM 3: 36

APPENDIX 1 ROBUST SUMMARIES

IUCLID

Data Set

Existing Chemical

CAS No.

EINECS Name

EC No.

Molecular Formula

: ID: 6865-35-6

: 6865-35-6

: barium distearate

: 229-966-3

: C18H36O2.1/2Ba

Producer related part

Company Creation date

: Epona Associates, LLC

: 19.12.2005

Substance related part

Company

: Epona Associates, LLC

Creation date

: 19.12.2005

Status

Memo

: Barium stearate

Printing date

: 22.12.2005

Revision date

Date of last update

: 21.12.2005

Number of pages

: 10

Chapter (profile)

: Chapter: 2.1, 2.2, 2.4, 2.5, 2.6.1, 3.1.1, 3.1.2, 3.3.1, 3.5, 4.1, 4.2, 4.3, 5.1.1,

5.1.2, 5.1.3, 5.1.4, 5.4, 5.5, 5.6, 5.8.1, 5.8.2

Reliability (profile)

Flags (profile)

: Reliability: without reliability, 1, 2, 3, 4

: Flags: without flag, confidential, non confidential, WGK (DE), TA-Luft (DE), Material Safety Dataset, Risk Assessment, Directive 67/548/EEC, SIDS

ld 6865-35-6 Date 22.12.2005

2.1 **MELTING POINT**

Value

: = 160 °C

Sublimation

Method

1978

Year GLP

no data

Test substance

: as prescribed by 1.1 - 1.4

Reliability

: (2) valid with restrictions

Published information

19.12.2005

(1)

2.2 **BOILING POINT**

Value

: = 661.1 °C at

Decomposition

Method

: other: calculated

Year **GLP**

: 2005

Test substance

; as prescribed by 1.1 - 1.4

Method

: Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPWIN

v1.41)

Remark

: Barium stearate is a solid; determination of boiling point

Requit

is not appropriate

: Boiling Pt (deg C): 661.06 (Adapted Stein & Brown method)

Test substance

: SMILES:

C

MOL FOR: C36 H70 O4 Ba1

MOL WT: 704.28

Reliability

(2) valid with restrictions

Data were obtained by modeling

: Critical study for SIDS endpoint

21,12,2005

(3)

2.4 **VAPOUR PRESSURE**

Value

: = .0000000000001 hPa at 25 °C

Decomposition

Method Year

: 2005

GLP Test substance

: as prescribed by 1.1 - 1.4

Method

: Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPWIN

Remark

: Barium stearate is a solid; determination of vapor pressure

is not appropriate

Result

: VP(mm Hg,25 deg C): 7.52E-014 (Modified Grain method)

Test substance

: SMILES:

MOL FOR: C36 H70 O4 Ba1

MOL WT: 704.28

ld 6865-35-6 Date 22.12.2005

(2)(3)

Reliability

(2) valid with restrictions

Data were obtained by modeling

Flag

21.12.2005

Critical study for SIDS endpoint

PARTITION COEFFICIENT

Method

Year GIP

2002 no

Test substance

as prescribed by 1.1 - 1.4

Remark

: Determination of partition coefficient is not relevant. The

substance readily dissociates.

Reliability

: (2) valid with restrictions

Flac

Critical study for SIDS endpoint

21.12.2005

(5)

Partition coefficient

: octanol-water

Log pow

= 15.14 at °C

pH value

Method

other (calculated)

Year

2005

GLP

: as prescribed by 1.1 - 1.4

: (KOWWIN v1.67 estimate)

Method Result

: Log Octanol-Water Partition Coef (SRC):

Log Kow (KOWWIN v1.67 estimate) = 15.14

Test substance

Test substance

SMILES:

MOL FOR: C36 H70 O4 Ba1

MOL WT: 704.28

Reliability

(2) valid with restrictions

Data were obtained by modeling

21.12.2005

(3)

2.6.1 SOLUBILITY IN DIFFERENT MEDIA

Solubility in

Water

Value

ca. 3.5 mg/l at 20 °C

pH value

concentration

at °C

Temperature effects

Examine different pol.

pKa

at 25 °C

Description

Stable

not soluble

Deg. product

other

Method Year

: 2004

GLP Test substance : yes as prescribed by 1.1 - 1.4

Method

: A preliminary study was performed to determine the

approximate equivalence point. As part of

method development, an approximate solubility was determined

ld 6865-35-6

Date 22.12.2005

by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). : (2) valid with restrictions Not a guideline method

Reliability

19.12.2005

(5)

ld 6865-35-6 Date 22.12.2005

(3)

3.1.1 PHOTODEGRADATION

Type

air

Light source

Light spectrum

nm

Relative intensity

based on intensity of sunlight

INDIRECT PHOTOLYSIS

Sensitizer

: OH

Conc. of sensitizer

Rate constant

: = .0000000000429098 cm²/(molecule*sec)

Degradation

: = 50 % after .3 day(s)

Deg. product Method

: other (calculated)

Year

: 2005

GLP Test substance : no

: as prescribed by 1.1 - 1.4

Method Result

: Atmospheric Oxidation (25 deg C) [AopWin v1.91];

: Hydroxyl Radicals Reaction:

OVERALL OH Rate Constant = 42.9098 E-12 cm3/molecule-sec

Half-Life = 0.249 Days (12-hr day; 1.5E6 OH/cm3)

Half-Life = 2.991 Hrs

Ozone Reaction: No Ozone Reaction Estimation

Test substance

: SMILES:

MOL FOR: C36 H70 O4 Ba1

MOL WT: 704.28

Reliability

: (2) valid with restrictions

Data were obtained by modeling

Flag 21,12,2005 : Critical study for SIDS endpoint

3.1.2 STABILITY IN WATER

Deg. product

Method

: 2005

Year GLP

: no

Test substance

: as prescribed by 1.1 - 1.4

Remark

: Determination of hydrolysis is not relevant. The substance

readily dissociates.

Reliability

: (2) valid with restrictions

Endpoint represented using dissociation products

19.12.2005

(5)

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

Type

: fugacity model level III

Media

Air Water

% (Fugacity Model Level I) % (Fugacity Model Level I)

Soil **Biota**

% (Fugacity Model Level I) % (Fugacity Model Level II/III)

ld 6865-35-6 Date 22,12,2005

Soil

% (Fugacity Model Level II/III)

Method

other: calculated

Year

Result

Level III Fugacity Model:

Mass Amount Half-Life Emissions

(percent) 0.0807

(kg/hr) (hr) 5.98 1000

Air Water 2.32

1.44e+003 1000

Soil 30.7 Sediment 66.9 1.44e+003 1000 5.76e+003 0

Persistence Time: 2.65e+003 hr

Test substance

: SMILES:

MOL FOR: C36 H70 O4 Ba1

MOL WT: 704.28

Reliability

(2) valid with restrictions

Data were obtained by modeling

Flag 21.12.2005 : Critical study for SIDS endpoint

3.5 **BIODEGRADATION**

Deg. product Method

Year

2005

GLP

no

Test substance

as prescribed by 1.1 - 1.4

Remark

: Determination of biodegradation is not relevant. The

substance readily dissociates.

Reliability

(2) valid with restrictions

Endpoint represented using dissociation products

19.12.2005

(5)

(3)

ld 6865-35-6

Date 22.12.2005

4.1 ACUTE/PROLONGED TOXICITY TO FISH

Method

:

Year

2005

GLP

: no

Test substance

as prescribed by 1.1 - 1.4

Remark

: Based on the low water solubility of barium stearate, ready dissociation, and high partition coefficient of stearic

acid, acute aquatic toxicity testing is not appropriate.

Reliability

: (2) valid with restrictions

Based on the physical/chemical properties of the substance

19.12.2005

(5)

4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES

Method

:

Year GLP 2005

Test substance

no as prescribed by 1.1 - 1.4

Remark

; Based on the low water solubility of barium stearate, ready

dissociation, and high partition coefficient of stearic

acid, acute aquatic toxicity testing is not appropriate.

Reliability

(2) valid with restrictions

Based on the physical/chemical properties of the substance

19.12.2005

(5)

4.3 TOXICITY TO AQUATIC PLANTS E.G. ALGAE

Method

:

Year GLP : 2005 : no

Test substance

: as prescribed by 1.1 - 1.4

Remark

: Based on the low water solubility of barium stearate, ready

dissociation, and high partition coefficient of stearic acid, acute aquatic toxicity testing is not appropriate.

Reliability

(2) valid with restrictions

Based on the physical/chemical properties of the substance

19.12.2005

(5)

(2)

(4)

5.1.1 ACUTE ORAL TOXICITY

Type

LD50 3390 mg/kg bw

Value Species

Strain.

Sex

Number of animals

Vehicle

Doses

Method

2004

Year GLP

: no data

Test substance

: as prescribed by 1.1 - 1.4

Reliability

19.12.2005

: (2) valid with restrictions

LD50

rat

Type Value

2506 mg/kg bw

Species

Strain

Sex

Number of animals

Vehicle

Doses

Method

Year : 1992 GLP no data

Test substance

: as prescribed by 1.1 - 1.4

Reliability

: (2) valid with restrictions

Published information

19.12.2005

Type : LD50

Value

: 1832 - mg/kg bw

Species

Strain

Sex

Number of animals

Vehicle

Doses

Method Year

: 1992

: mouse

GLP Test substance : no data : as prescribed by 1.1 - 1.4

: (2) valid with restrictions

Reliability 19.12.2005

Published information (4)

5.1.2 ACUTE INHALATION TOXICITY

5.1.3 ACUTE DERMAL TOXICITY

- 5.1.4 ACUTE TOXICITY, OTHER ROUTES
- 5.4 REPEATED DOSE TOXICITY
- 5.5 GENETIC TOXICITY 'IN VITRO'
- 5.6 GENETIC TOXICITY 'IN VIVO'
- 5.8.1 TOXICITY TO FERTILITY
- 5.8.2 DEVELOPMENTAL TOXICITY/TERATOGENICITY

9. References

(1)	Cited in NISC BiblioLine
(2)	Crompton Corporation (2004) MSDS for Barium Stearate, version 1.1
(3)	EPI SUMMARY (v3.11) (2005)
(4)	Gigiena Truda i Professional'nye Zabolevaniya. Labor Hygiene and Occupational Diseases. (V/O Mezhdunarodnaya Kniga, 113095 Moscow, USSR) V.1-36, 1957-1992. Cited in NISC BiblioLine
(5)	Lezotte, F.J. and W.B. Nixon (2002) Determination of the dissociation constant of barium stearate, Wildlife International, Ltd. Study No. 534C-112, conducted for the Metal Carboxylates Coalition.

IUCLID

Data Set

Existing Chemical

EINECS Name

EC No.

Molecular Formula

: ID: 57-11-4

: stearic acid

: 200-313-4

: C18H36O2

Producer related part

Company

: Epona Associates, LLC

Creation date

: 04.12.2003

Substance related part

Company Creation date : Epona Associates, LLC

: 04.12.2003

Status

Memo

: SOCMA MCC

Printing date

: 22.12.2005

Revision date

Date of last update

: 22.12.2005

Number of pages

: 12

Chapter (profile)

: Chapter: 2.1, 2.2, 2.4, 2.5, 2.6.1, 3.1.1, 3.1.2, 3.3.1, 3.5, 4.1, 4.2, 4.3, 5.1.1,

5.1.2, 5.1.3, 5.1.4, 5.4, 5.5, 5.6, 5.8.1, 5.8.2

Reliability (profile) Flags (profile)

: Reliability: without reliability, 1, 2, 3, 4 : Flags: without flag, confidential, non confidential, WGK (DE), TA-Luft (DE),

Material Safety Dataset, Risk Assessment, Directive 67/548/EEC, SIDS

ld 57-11-4

Date 22,12,2005

2.1 **MELTING POINT**

Value

: = 69 - 70 °C

Sublimation

Method

: 1982

Year GLP

: no data

Test substance

: as prescribed by 1.1 - 1.4

Reliability

: (2) valid with restrictions

Information taken from a peer-reviewed publication.

Flag

: Critical study for SIDS endpoint

04.12.2003

(17)

(17)

2.2 **BOILING POINT**

Value

: = 383 °C at 1013 hPa

Decomposition

Method

Year **GLP**

: no data

Test substance

: as prescribed by 1.1 - 1.4

Reliability

: (2) valid with restrictions

Flag

Information taken from a peer-reviewed publication. : Critical study for SIDS endpoint

04.12.2003

2.4 **VAPOUR PRESSURE**

Value

: = 1.33 hPa at 173.7 °C

Decomposition

Method

: 1969

Year

GLP Test substance

: no data : as prescribed by 1.1 - 1.4

Reliability

: (2) valid with restrictions

Information taken from a peer-reviewed publication.

Flag

: Critical study for SIDS endpoint

04.12.2003

(16)

PARTITION COEFFICIENT

Partition coefficient

: octanol-water

Log pow pH value

: = 8.42 at °C

Method

Year GLP

: no data

Test substance

: as prescribed by 1.1 - 1.4

Reliability

: (2) valid with restrictions

Information taken from a peer-reviewed publication.

ld 57-11-4 Date 22.12.2005

04.12.2003 (10)

2.6.1 SOLUBILITY IN DIFFERENT MEDIA

Solubility in

: Water

Value

: = .568 mg/l at 25 °C

pH value

concentration : at °C

Temperature effects

Examine different pol.

pKa Description : at 25 °C

Stable

Deg. product Method

: other: measured : 1966

Year GLP

: no data

Test substance

: as prescribed by 1.1 - 1.4

Result

: Water solubility = .0001 mg/L at 30 deg C

Reliability

: (2) valid with restrictions

information taken from a peer-reviewed publication.

05.12.2003

(13)

ld 57-11-4 Date 22,12,2005

3.1.1 PHOTODEGRADATION

Type : air Light source

Light spectrum

Relative intensity based on intensity of sunlight

nm

DIRECT PHOTOLYSIS

: = .5 day(s)Halflife t1/2 Degradation % after

Quantum yield Deg. product

Method other (calculated)

: 2003 Year GLP : no

Test substance : as prescribed by 1.1 - 1.4

Method : Estimated using AopWin v1.91

: Atmospheric Oxidation (25 deg C) [AopWin v1.91]: Result

Hydroxyl Radicals Reaction:

OVERALL OH Rate Constant = 22,4804 E-12

cm3/molecule-sec

Half-Life = 0.476 Days (12-hr day; 1.5E6 OH/cm3) Half-Life = 5.710 Hrs

Ozone Reaction:

No Ozone Reaction Estimation

Reliability : (2) valid with restrictions

: Critical study for SIDS endpoint Flag

22.12.2005 (4)

Type : air Light source

Light spectrum

Relative intensity based on intensity of sunlight

DIRECT PHOTOLYSIS

Haiflife t1/2 = 17 hour(s) Degradation % after

Quantum yield Deg. product

Method Year

GLP : no data

Test substance : as prescribed by 1.1 - 1.4

Result : Vapor phase stearic acid is degraded in the

atmosphere by reaction with photochemically-produced

hydroxyl radicals

with a half-life of about 17 hours.

Source : Epona Associates, LLC Reliability : (2) valid with restrictions

Information taken from a peer-reviewed publication.

05.12.2003 (1) (3) (7) (11)

3.1.2 STABILITY IN WATER

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

ld 57-11-4

Date 22.12.2005

(4)

(8)

fugacity model level III Type

Media

Air % (Fugacity Model Level I) % (Fugacity Model Level I) Water % (Fugacity Model Level I) Soil % (Fugacity Model Level II/III) Biota % (Fugacity Model Level II/III) Soil

other: modeling Method

2003 Year

Method

EPI v3.11

Result

Level III Fugacity Model:

Mass Amount Half-Life Emissions

(percent) (hr) (kg/hr) 0.676 Air 11.4 1000 Water 7.19 360 1000 Soil 28.9 360 1000 Sediment 63.3 1.44e+003 0

Persistence Time: 640 hr

Reliability

: (2) valid with restrictions

Flag 22.12.2005 : Critical study for SIDS endpoint

BIODEGRADATION 3.5

: aerobic Type

Inoculum

: activated sludge

Contact time

Degradation : = 77 (±) % after 28 day(s) Result : readily biodegradable Kinetic of testsubst. : 10 day(s) = 65 %

14 day(s) = 69 % 28 day(s) = 77 %

%

Deg. product

Method other: BOD test

Year 1983 **GLP** no data

Test substance : as prescribed by 1.1 - 1.4

Remark : Results are an average of 11 participating laboratories. Result 65, 69 and 77 % degradation after 10, 14 and 28 days,

respectively.

Reliability (2) valid with restrictions

Information taken from a peer-reviewed publication.

22.12.2005

: aerobic Type

Inoculum : activated sludge

Concentration : 100 g/l related to Test substance

related to

Contact time : 5 day(s) Degradation (±) % after Result : readily blodegradable

Deg. product

Method : other: BOD5

Year : 1985 GLP no data

Test substance : as prescribed by 1.1 - 1.4

ld 57-11-4

Date 22.12.2005

Result

: Rate: .0088 1/HR

Half-Life [Days]: 3.3

Test condition

: BOD test conducted at 20 deg C.

Reliability

: (2) valid with restrictions

Information taken from a peer-reviewed publication.

22.12.2005

(15)

(14)

Type

: aerobic

Inoculum

: other: sewage sludge

Contact time

: 21 day(s)

Degradation Result

 $= 95 (\pm) \%$ after 21 day(s) : readily biodegradable

Deg. product

Method

: other: Sturm CO2 evolution

Year GLP

: 1984 : no data

Test substance

: as prescribed by 1.1 - 1.4

Reliability

: (2) valid with restrictions

Information taken from a peer-reviewed publication.

Flag

: Critical study for SIDS endpoint

22.12.2005

Type

aerobic

Inoculum

: activated sludge

Contact time

(±) % after

Degradation

: readily biodegradable

Result Deg. product

Method

: other: Warburg

Year

: 1973

GLP

: no data

Test substance

as prescribed by 1.1 - 1.4

: Rate: .0077; .0052; .00217

Result

Rate Units: 1/HR

Test condition

Haif-Life [Days]: 3.75; 5.55; 10.7 : Test Method: WARBURG

Oxygen Condition: AEROBIC Analysis Method: 02 UPTAKE

Inoculum: ACTIVATED SLUDGE

Temperature [øC]: 20; 25; 30

Reliability

(2) valid with restrictions

Information taken from a peer-reviewed publication.

22.12.2005

(12)

ld 57-11-4

Date 22.12.2005

4.1 **ACUTE/PROLONGED TOXICITY TO FISH**

Type

: static

Species

: Oncorhynchus kisutch (Fish, fresh water, marine)

Exposure period

: 96 hour(s)

Unit

: µg/l

LC50

: = 12000 measured/nominal

Method

Year

: 1977

GLP

: no data

Test substance

: as prescribed by 1.1 - 1.4

Test substance

: "pure"

Reliability

: (2) valid with restrictions

Flag

: Critical study for SIDS endpoint

22.12.2005

(9)

4.2 **ACUTE TOXICITY TO AQUATIC INVERTEBRATES**

4.3 **TOXICITY TO AQUATIC PLANTS E.G. ALGAE**

ld 57-11-4 5. Toxicity Date 22.12.2005

5.1.1 ACUTE ORAL TOXICITY

Type : LD50

Value : = 4600 mg/kg bw

Species

Strain

Sex

Number of animals

Vehicle

Doses Method

Year

GLP : no data

Test substance : as prescribed by 1.1 - 1.4

: (2) valid with restrictions Reliability

Information taken from a peer-reviewed publication. 22.12.2005

LD100 Type

Value = 14286 - mg/kg bw

Species human

Strain Sex

Number of animals

Vehicle Doses

Method

Year 1976 GLP

Test substance : as prescribed by 1.1 - 1.4

Result : Minimum/Potential Fatal Human Dose:

no data

1. 1= PRACTICALLY NONTOXIC: PROBABLE ORAL LETHAL DOSE

(2)

(HUMAN) MORE THAN 1

QT (2.2 LB) FOR 70 KG PERSON (150 LB).

Reliability : (2) valid with restrictions

Information taken from a peer-reviewed publication.

22.12.2005 (5)

5.1.2 ACUTE INHALATION TOXICITY

5.1.3 ACUTE DERMAL TOXICITY

5.1.4 ACUTE TOXICITY, OTHER ROUTES

REPEATED DOSE TOXICITY 5.4

Type Sub-chronic

Species

Sex :

Strain

: oral feed Route of admin.

ld 57-11-4 Date 22.12.2005

(2)

(2)

Exposure period Frequency of treatm. 24 weeks

Post exposure period

Doses Control group 50g/kg/day

Method Year

no data

GLP Test substance

as prescribed by 1.1 - 1.4

Result

: Rats fed 50 g/kg/day stearic acid for 24 weeks developed reversible lipogranulomas in adipose tissue. No significant pathological lesions were observed in rats fed 3000 ppm stearic acid orally for about 30 weeks, but anorexia, increased mortality, and a greater incidence of pulmonary infection were observed. Stearic acid is one of the least effective fatty acids in producing hyperlipemia, but the

most potent in diminishing blood clotting time.

Reliability

(2) valid with restrictions

Information taken from a peer-reviewed publication.

22.12.2005

Type

: Sub-acute

Species Sex

rat

Strain

Route of admin. Exposure period oral feed 6 or 9 weeks

Frequency of treatm.

Post exposure period

Doses

5 or 6%

Control group

Result

: Rats fed 5% stearic acid as part of a high-fat diet for 6 weeks, or 6% stearic acid for 9 weeks, showed a decreased

blood clotting time and hyperlipemia.

Reliability

(2) valid with restrictions

Information taken from a peer-reviewed publication.

22.12.2005

Type Species : Sub-acute mouse

Sex Strain

Route of admin.

oral feed 3 weeks

Exposure period Frequency of treatm.

Post exposure period

5 to 50%

Doses Control group

Method Year

no data

GLP

Test substance

as prescribed by 1.1 - 1.4

Result

: When diets containing 5 to 50% stearic acid (as the

monoglyceride) were

fed to weanling mice for 3 weeks, depression of weight

gain was seen above

the 10% dietary level. Mortality occurred only with the

50% diet. The

effects were less noticeable in adult mice.

ld 57-11-4 Date 22.12.2005

Reliability

: (2) valid with restrictions Information taken from a peer-reviewed publication.

22.12.2005

(2)

- 5.5 **GENETIC TOXICITY 'IN VITRO'**
- 5.6 **GENETIC TOXICITY 'IN VIVO'**
- 5.8.1 TOXICITY TO FERTILITY
- 5.8.2 DEVELOPMENTAL TOXICITY/TERATOGENICITY

9. References

(1)	Bidleman TF (1988) Environ Sci Technol 22: 361-367	(1988).
	Cited in BiblioLine.	

- (2) Clayton, G.D., F.E. Clayton (eds.) Patty's Industrial Hygiene and Toxicology. Volumes 2A, 2B, 2C, 2D, 2E, 2F: Toxicology. 4th ed. New York, NY: John Wiley & Sons Inc., 1993-1994. 3568. Cited in BiblioLine
- (3) Daubert TE, Danner RP (1989) Physical and Thermodynamic Properties of Pure
 Chemicals: Data Domination. Design Inst Phys Prop Data,
 Amer Inst Chem
 Eng. NY,NY: Hemisphere Pub. Corp 4 Vol (1989). Cited in BiblioLine.
- (4) Epiwin v3.11
- (5) Gosselin, R.E., H.C. Hodge, R.P. Smith, and M.N. Gleason (1976) Clinical Toxicology of Commercial Products. 4th ed. Baltimore: Williams and Wilkins, 1976.,p. II-135. Cited In BiblioLine.
- (7) Johnson RW, Daniels RW (1993) Kirk-Othmer Encycl Chem Tech. 4th ed. NY,NY; John Wiley and Sons 5: 147-158 (1993). Cited in BiblioLine.
- (8) King, E.F.; Painter, H.A. (1983) RING-TEST PROGRAM
 1981-1982, ASSESSMENT OF BIODEGRADABILITY OF CHEMICALS IN
 WATER BY MANOMETRIC RESPIROMETRY. COMM. EUR. COMMUNITIES,
 EUR 8631, 31 PP, 1983 CIS Record ID.: BD-0000218
- (9) Leach, J.M. and A.N. Thakore (1977) Compounds Toxic to Fish Pulp Mill Waste Streams Progress in Water Technology, 9: 787-798 CIS Record ID.: AQ-0132049.
- (10) Leo, A.J. (1978) Report on the Calculation of Octanol/Water Log P Values for Structures in EPA Files. CIS Record ID: IS-0000416. BiblioLine © 1997-2003, NISC International, Inc.
- (11) Meylan WM, Howard PH (1993) Chemosphere 26: 2293-99 (1993). Cited in BiblioLine.
- (12) Novak, J.T. and Kraus, D.L. (1973) DEGRADATION OF LONG CHAIN FATTY ACIDS BY ACTIVATED SLUDGE. Water Research, 7: 843-51, 1973 ISSN: 0043-1354 CIS Record ID.: BD-0000208.
- (13) Robb ID (1966) Aust J Chem 19: 2281-84 (1966) Cited in BiblioLine © 1997-2003, NISC International, Inc.
- (14) Ruffo, C.; Galli, E.; Arpino, A. (1984) COMPARISON OF METHODS FOR THE BIODEGRADABILITY OF SOLUBLE AND INSOLUBLE ORGANOCHEMICALS. Ecotoxicology and Environmental Safety, 8: 275-9, 1984 CIS Record ID.: BD-0000209. BiblioLine © 1997-2003, NISC International, Inc.

ld 57-11-4

Date 22.12.2005

- (15) Urano, K. and Saito, M. (1985) BIODEGRADABILITY OF SURFACTANTS AND INHIBITION OF SURFACTANTS TO BIODEGRADATION OF OTHER POLLUTANTS, Chemosphere, 14: 1333-42, 1985
 CIS Record ID.: BD-0000210. BiblioLine © 1997-2003, NISC International, Inc.
- (16) Weast, R.C. (1969) Chemical Rubber Company Handbook of Chemistry and Physics. 50th Ed, CRC Press, Inc. Cleveland, Ohio, 1969 CIS Record ID.: IS-0000414. BiblioLine

 1997-2003, NISC International, Inc.
- (17) Windholz, M. (1982)The Merck Index, 9th Edition Merck and Company, Inc., Rahway, NJ, 1982. CIS Record ID.: IS-0000412 BiblioLine © 1997-2003, NISC International, Inc.

IUCLID

Data Set

Existing Chemical

CAS No. EINECS Name

EINEGS Name

Molecular Formula

: ID: 7440-39-3

: 7440-39-3

: barium

: 231-149-1 : Ba

Producer related part

Company Creation date : Epona Associates, LLC

: 19.12.2005

Substance related part

Company Creation date : Epona Associates, LLC

: 19.12.2005

Status Momo

: Barium

Printing date Revision date : 22.12.2005

Revision date Date of last update

: 22.12.2005

Manaber of pages

: 8

Chapter (profile)

: Chapter: 2.1, 2.2, 2.4, 2.5, 2.6.1, 3.1.1, 3.1.2, 3.3.1, 3.5, 4.1, 4.2, 4.3, 5.1.1,

5.1.2, 5.1.3, 5.1.4, 5.4, 5.5, 5.6, 5.8.1, 5.8.2

Reliability (profile) Flags (profile) : Reliability: without reliability, 1, 2, 3, 4

 Flags: without flag, confidential, non confidential, WGK (DE), TA-Luft (DE), Material Safety Dataset, Risk Assessment, Directive 67/548/EEC, SIDS

2. Physico-Chemical Data

ld 7440-39-3

Date 22.12.2005

MELTING POINT 2.1

Value

: ca. 710 °C

Sublimation

Method

: 2002

Year GLP

: no data

Test substance

: as prescribed by 1.1 - 1.4

Reliability

: (2) valid with restrictions Published information

Flag

: Critical study for SIDS endpoint

19.12.2005

(4)

2.2 **BOILING POINT**

Value

: ca. 1600 °C at

Decomposition

Method

: 2002

Year GLP

: no data

Test substance

: as prescribed by 1.1 - 1.4

Reliability

: (2) valid with restrictions

Published information

Flag

: Critical study for SIDS endpoint

19.12.2005

(4)

VAPOUR PRESSURE

Decomposition

Method

Year GLP

: 2005 : no

Test substance

: as prescribed by 1.1 - 1.4

Remark

: Not relevant based on nature of substance (metal)

Reliability

: (2) valid with restrictions

Based on physical property of substance

Flag

: Critical study for SIDS endpoint

19.12.2005

PARTITION COEFFICIENT

Partition coefficient

: octanol-water : .23 at 25 °C

Log pow pH value

Method

Year

: 2005

GLP Test substance

: as prescribed by 1.1 - 1.4

: Log Kow (KOWWIN v1.67 estimate)

Method Remark

: Not relevant based on nature of substance (metal)

2. Physico-Chemical Data

ld 7440-39-3

Date 22.12.2005

Value based on Epiwin model

Reliability

: (2) valid with restrictions

Data were obtained by modeling; based on physical property

of substance

Flag

: Critical study for SIDS endpoint

19.12.2005

(1)

2.6.1 SOLUBILITY IN DIFFERENT MEDIA

Solubility in

Water

Value

at °C

pH value

concentration Temperature effects at °C

Examine different pol.

pKa

: at 25 °C

Description

: not soluble

Stable

Deg. product

Method

: 2005

Year GLP

: no

Test substance

: as prescribed by 1.1 - 1.4

Remark

: Not relevant based on nature of substance (metal)

Reliability

(2) valid with restrictions

Based on physical property of substance

Flag

: Critical study for SIDS endpoint

19,12,2005

3. Environmental Fate and Pathways

ld 7440-39-3 Date 22.12.2005

3.1.1 PHOTODEGRADATION

Deg. product

Method

other (calculated)

Year

: 2005

GLP

: no

Test substance

: as prescribed by 1.1 - 1.4

Method Remark

: Atmospheric Oxidation (25 deg C) [AopWin v1.91]: : Cannot be modeled with Epiwin

Result

: Atmospheric Oxidation (25 deg C) [AopWin v1.91]:

Hydroxyl Radicals Reaction:

OVERALL OH Rate Constant = 0.0000 E-12

cm3/molecule-sec

Half-Life = -

Ozone Reaction:

No Ozone Reaction Esti

Reliability

: (2) valid with restrictions

Data were obtained by modeling

Flag

22.12.2005

: Critical study for SIDS endpoint

(1)

3.1.2 STABILITY IN WATER

Deg. product

Method

Year **GLP**

2005

Test substance

: no data : as prescribed by 1.1 - 1.4

Remark

: Not relevant based on nature of substance (metal)

Result

: Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN

v1.67]:

Rate constants can NOT be estimated for this structur

Reliability

: (2) valid with restrictions

Data were obtained by modeling; Based on physical property

of substance

22.12.2005

(1)

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

Type

: fugacity model level III

Media

% (Fugacity Model Level I)

Air Water Soil Biota

: : % (Fugacity Model Level I) % (Fugacity Model Level I) : % (Fugacity Model Level II/III) % (Fugacity Model Level II/III)

Method

other: calculated

Year

Soil

2005

Method Result

: EPI SUMMARY (v3.11) : Level III Fugacity Model:

Mass Amount Half-Life **Emissions** (percent) (hr)

37.9

(kg/hr) 1e+005 1000

3. Environmental Fate and Pathways

ld 7440-39-3 Date 22.12.2005

360 1000 Water 55.8 1000 Soil 6.18 360 1.44e+003 0 Sediment 0.0944

Persistence Time: 180 hr

Reliability

: (2) valid with restrictions

Data were obtained by modeling : Critical study for SIDS endpoint

Flag 22.12.2005

(1)

BIODEGRADATION

Contact time

(±) % after

Degradation Result

other: not biodgradable

Deg. product

Method

: 2005

Year GLP

: no

Test substance

: as prescribed by 1.1 - 1.4

Remark

: Not relevant based on nature of substance (metal)

Reliability

: (2) valid with restrictions

Based on physical property of substance

Flag

: Critical study for SIDS endpoint

19.12.2005

4. Ecotoxicity

ld 7440-39-3

Date 22.12.2005

4.1 ACUTE/PROLONGED TOXICITY TO FISH

Type

flow through

Species

Cyprinodon variegatus (Fish, estuary, manne)

Exposure period

: 96 hour(s)

Unit LC50

: mg/l : > 500

Method

: : 1981

Year GLP

: no data

Test substance

: no data : other TS

Test substance

: Barium (unclear which form of barium was tested)

Reliability

: (2) valid with restrictions

2 (Reliable with restrictions): Insufficient details are present to indicate whether all test methods followed the Guidelines. However, methods and number of studies with

similar results seem sufficient to accept the data

19.12.2005

(2)

4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES

Type

: flow through

Species

: Daphnia magna (Crustacea)

Exposure period

: 48 hour(s)

Unit NOEC

: mg/l

EC50

68 410 -

Method Year

1980

GLP

: no data

Test substance

: other TS

Result

: >530 mg/L (at 24 hours) and 48 hour LC50 was 410 mg/L with

confidence limits of 320-530 mg/L

Test substance

: Barium (unclear which form of barium was tested)

Reliability

: (2) valid with restrictions

2 (reliable with restrictions): Comparable to guideline

study with adequate documentation.

19.12.2005

(3)

4.3 TOXICITY TO AQUATIC PLANTS E.G. ALGAE

ld 7440-39-3 Date 22.12.2005

- 5.1.1 ACUTE ORAL TOXICITY
- 5.1.2 ACUTE INHALATION TOXICITY
- 5.1.3 ACUTE DERMAL TOXICITY
- 5.1.4 ACUTE TOXICITY, OTHER ROUTES
- 5.4 REPEATED DOSE TOXICITY
- 5.5 GENETIC TOXICITY 'IN VITRO'
- 5.6 GENETIC TOXICITY 'IN VIVO'
- 5.8.1 TOXICITY TO FERTILITY
- 5.8.2 DEVELOPMENTAL TOXICITY/TERATOGENICITY

9. References

Date 22.12.2005

- (1) EPI SUMMARY (v3.11) (2005)
- (2) Heitmuller, P.T., T.A. Hollister and P. R. Parrish. (1981)
 Acute Toxicity of 54 Industrial Chemicals Sheepshead Minnows
 (Cyprinodon variegatus) Bull. Enviro. Contam. Toxicol.
 27:596-604
- (3) LeBlanc, G.A. Acute Toxicity of Priority Pollutants to Water Flea (Daphnia magna). Bull. Environ. Contam. Toxicol. 24:684-691

AQUIRE database info accessed on 11/9/05 via http://www.pesticideinfo.org/List_AquireAll.jsp?Rec_Id=PC356 0&Taxa_Group=Crustaceans

(4) O'Neil, M.J., Smith, A., Heckelman, P.E., and J.R. Obenchain (eds.). 2002. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Ed. Merck & Co., Inc., Whitehouse Station, N.J.